【题目】如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.
(1)求证:四边形AEGF是正方形;
(2)求AD的长.
【答案】(1)见解析;(2)AD=6;
【解析】
(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=6.
(1)证明:由翻折的性质可得,△ABD≌△ABE,△ACD≌△ACF,
∴∠DAB=∠EAB,∠DAC=∠FAC,
∵∠BAC=45°,
∴∠EAF=90°,
∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°,
∴四边形AEGF为矩形,
∵AE=AD,AF=AD,
∴AE=AF,
∴矩形AEGF是正方形;
(2)解:根据对称的性质可得:BE=BD=2,CF=CD=3,
设AD=x,则正方形AEGF的边长是x,
则BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,
在Rt△BCG中,根据勾股定理可得:(x﹣2)2+(x﹣3)2=52,
解得:x=6或x=﹣1(舍去).
∴AD=x=6;
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.
(1)求该抛物线的解析式;
(2)P是抛物线上一动点(不与点A、B重合),
①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;
②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,CE、BD分别为∠ACB、∠ABC的角平分线,CE、BD相交于P.
(1)求证:CD=BE;
(2)若∠A=98°,求∠BPC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在抛物线上,直线⊥y轴于点M,AC⊥于点C,以AC为对角线作矩形ABCD,若点M的坐标为(0,6),则BD的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于,,交轴于.
(1)求抛物线解析式;
(2)点在第一象限的抛物线上,与的面积比为,求点的坐标;
(3)在(2)的条件下,在点与之间的抛物线上取点,交于,交轴于、交延长线于,当时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列函数图象上任取不同两点P(x1,y1),Q(x2,y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是( )
A.y=﹣2x+1(x<0)B.y=﹣x2﹣2x+8(x<0)
C.y=(x>0)D.y=2x2+x﹣6(x>0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB.∠ACB的平分线CD与⊙O交于点D.
(1)求∠ACD的度数;
(2)探究CA,CB,CD三者之间的等量关系,并证明;
(3)E为⊙O外一点,满足ED=BD,AB=5,AE=3,若点P为AE中点,求PO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴相交于两点(点位于点的左侧),与轴相交于点,是抛物线的顶点,直线是抛物线的对称轴,且点的坐标为.
(1)求抛物线的解析式.
(2)已知为线段上一个动点,过点作轴于点.若的面积为.
①求与之间的函数关系式,并写出自变量的取值范围;
②当取得最值时,求点的坐标.
(3)在(2)的条件下,在线段上是否存在点,使为等腰三角形?如果存在,请求出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,按以下步骤作图:
①:以点为圆心,以小于的长为半径画弧,分别交、于点、;
②:分别以点、为圆心,以大于的长为半径画弧,两弧相交于点;
③:作射线,交边于点,
若,,则( )
A. 3B. C. 6D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com