精英家教网 > 初中数学 > 题目详情
13.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.

分析 连结AC和BD,它们相交于点O,连结OM、ON,则△OMN为等腰三角形,如图1;连结AN和BM,它们相交于点O,则△OMN为等腰三角形,如图2.

解答 解:如图1、2,△OMN为所作.

点评 本题考查了作与-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解决本题的关键是掌握正方形的性质和等腰三角形的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.下列计算正确的是(  )
A.2a+3b=5abB.a2•a3=a6C.a8÷a2=a4D.(a23=a6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.我们将抛物线少y=ax2+bx+c(a≠0)与x轴的一个交点、与y轴的交点及原点三点构成的三角形,称为这条抛物线的“原发三角形”

(1)抛物线y=x2-2x+1的“原发三角形”的面积为$\frac{1}{2}$;
(2)当c=-1时,抛物线y=(x-1)(x-c)(其中c≠0和1)的两个“原发二角形”全等?
请在图1平面直角坐标系中画出该抛物线的图象,并说明理由;(铅笔画图后请用黑色水笔加浓)
(3)请直接写出抛物线y=x2+4x+c的“原发三角形”的个数及相应的c的取值范围(或值).
(4)如图2,点B的坐标是(4,0),点C的坐标是(0,2),点A是射线BO上的动点(不与点B,O重合).△AOC和△BOC是抛物线y=ax2+bx+c(a≠0)的两个“原发三角形”.当原点到△ABC的外接圆圆心的距离最小时,求出此时抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.若四边形的两条对角线分别平分两组对角,则该四边形一定是(  )
A.平行四边形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对点D′落在矩形的对角线上,DE的长为1.5或$\frac{9}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列计算正确的是(  )
A.(a-b)2=a2-b2B.5x2+x3=5x5C.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$D.(a2b)3=a6b3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,抛物线y=ax2+bx+2与x轴交于点A(4,0)、E(-2,0)两点,连结AB,过点A作直线AK⊥AB,动点P从A点出发以每秒$\sqrt{5}$个单位长度的速度沿射线AK运动,设运动时间为t秒,过点P作PC⊥x轴,垂足为C,把△ACP沿AP对折,使点C落在点D处.
(1)求抛物线的解析式;
(2)当点D在△ABP的内部时,△ABP与△ADP不重叠部分的面积为S,求S与t之间的函数关系式,并直接写出t的取值范围;
(3)若线段AC的长是线段BP长的$\frac{1}{3}$,请直接写出此时t的值;
(4)是否存在这样的时刻,使动点D到点O的距离最小?若存在请直接写出这个最小距离;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列各式计算正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.3+$\sqrt{3}$=3$\sqrt{3}$C.3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$D.$\frac{\sqrt{14}-\sqrt{12}}{2}$=$\sqrt{7}$-$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列命题是假命题的是(  )
A.若|a|=|b|,则a=b
B.两直线平行,同位角相等
C.对顶角相等
D.若b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根

查看答案和解析>>

同步练习册答案