精英家教网 > 初中数学 > 题目详情
15.将两个全等的直角三角形,拼成一个四边形.那么这些图形中有4个轴对称图形.

分析 直接利用已知三角形结合轴对称图形的定义得出符合题意的答案.

解答 解:如图所示:将两个全等的直角三角形,拼成一个四边形,一共用4个轴对称图形.
故答案为:4.

点评 此题主要考查了图形的剪拼以及轴对称图形的定义,正确得出符合题意的图形是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.已知一点到圆的最小距离为3cm,最大距离为7cm,则圆的半径为(  )
A.2cmB.3cmC.5cmD.2cm或5cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算“-3的平方除以-2的立方,所得的商减去2,差是多少?”的算式是(-3)2÷(-2)2-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,∠3=∠4,AE=AD,∠1=∠2.求证:AC=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在平面直角坐标系中,将抛物线y=$\frac{1}{2}$x2经过平移得到抛物线y=$\frac{1}{2}$x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.
(1)若∠E=∠F,求证:∠ADC=∠ABC;
(2)若∠E=∠F=40°,求∠A的度数;
(3)若∠E=30°,∠F=40°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.实验与探究:三角点阵前n行的点数计算.
如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点…容易发现,10是三角点阵中前4行的点数的和,你能发现300是前多少行的点数的和吗?
如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+…+(n-2)+(n-1)+n,可以发现.
2×[1+2+3+…+(n-2)+(n-1)+n]=[1+2+3+…+(n-2)+(n-1)+n]+[n+(n-1)+(n-2)+…3+2+1]
把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+…+(n-2)+(n-1)+n=n(n+1)这就是说,三角点阵中前n项的点数的和是 n(n+1).
下列用一元二次方程解决上述问题
设三角点阵中前n行的点数的和为300,则有$\frac{1}{2}$n(n+1)=300整理这个方程,得:n2+n-600=0解方程得:n1=24,n2=-25,根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:
(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究出前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=45°,∠C=75°,求∠DAE,∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某种T型零件尺寸如图所示(左右宽度相同),求:
(1)阴影部分的周长是多少?(用含x,y的代数式表示)
(2)阴影部分的面积是多少?(用含x,y的代数式表示)
(3)x=2,y=3.5时,计算阴影部分的面积.

查看答案和解析>>

同步练习册答案