精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,AB=6,AD=8,将BC沿对角线BD对折,C点落在E点上,BE交AD于F,则AF的长为___________。

解析试题分析:先由长方形的性质可知,AB=CD,BE=BC,再根据图形翻折变换的性质可知,CD=DE=AB,利用全等三角形的判定定理可得△ABF≌△EDF,故BF=DF,AF+BF=AD,设AF=x,由勾股定理即可求出x的值.
∵四边形ABCD是长方形,AB=6,AD=8,
∴AB=CD=6,AD=BC=8,
∵△BED是△BCD沿BD翻折而成,
∴CD=DE=AB=8,∠E=90°,
∴△ABF≌△EDF,
∴BF=DF,AF+BF=AD=8,
在Rt△ABF中,设AF=x,则BF=8-x,由勾股定理得BF2=AB2+AF2,即(8-x)2=62+x2
解得
故答案为
考点:本题考查的是翻折变换的性质、全等三角形的判定与性质、勾股定理
点评:解答本题的关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案