分析 根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.
解答 解:已知:PD⊥OA,PE⊥OB,垂足分别为D、E;求证:PD=PE.
故答案为:PD=PE.
∵PD⊥OA,PE⊥OB,
∴∠PDO=∠PEO=90°,
在△PDO和△PEO中,
$\left\{\begin{array}{l}{∠PDO=∠PEO}\\{∠AOC=∠BOC}\\{OP=OP}\end{array}\right.$,
∴△PDO≌△PEO(AAS),
∴PD=PE.
点评 本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3×107 | B. | 0.3×107 | C. | 3×106 | D. | 30×105 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | k>1,b<0 | B. | k>1,b>0 | C. | k>0,b>0 | D. | k>0,b<0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com