精英家教网 > 初中数学 > 题目详情
1.已知等腰三角形的一边长为4cm,另一边为8cm,则它的周长是20cm.

分析 因为等腰三角形的两边分别为4和8,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.

解答 解:当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;
当4为腰时,其它两边为4和8,因为4+4=8,所以不能构成三角形,故舍去.
所以答案只有20.
故答案为:20cm.

点评 本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图为y=-2x2+bx+c的图象
(1)解关于x的方程-2x2+bx+c=0;
(2)将-2x2+bx+c因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知二次函数y=ax2+bx+c的图象经过点P(0,$-\frac{5}{2}$)、A(5,0)、B(1,0).
(1)求该二次函数的解析式;
(2)点C在该二次函数的图象上,当△ABC的面积为12时,求点C坐标;
(3)在(2)的条件下,求△ABC外接圆圆心点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.出租车司机李师傅一天下午的营运全是在东西走向的路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:
+8,-6,-5,+10,-5,+3,-2,+6,+2,-5
(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点什么方向?距离出发点多少米?
(2)如果汽车耗油量为0.2升/千米,那么这天下午汽车共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:(2$\sqrt{3}$)2-$\sqrt{18}$-$\frac{6}{\sqrt{3}}$+$\sqrt{(\sqrt{2}-2\sqrt{3})^{2}}$-(3-$\sqrt{2}$)(3+$\sqrt{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.请写出一个与5a2b是同类项的代数式a2b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读材料
大数学家高斯在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=$\frac{1}{2}$n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?
观察下面三个特殊的等式:
1×2=$\frac{1}{3}(1×2×3-0×1×2)$.
2×$3=\frac{1}{3}(2×3×4-1×2×3)$.
3×$4=\frac{1}{3}(3×4×5-2×3×4)$.
如果将这三个等式的两边相加,你会有怎样的发现呢?
解决问题
要求:直接在横线上写出结果(式子或数值),不必写过程.
(1)将材料中的三个特殊的等式两边相加,可以得到:
1×2+2×3+3×4=$\frac{1}{3}$×3×4×5;
(2)探究并计算:
1×2+2×3+3×4+4×5+…+20×21=$\frac{1}{3}$×20×21×22;
1×2+2×3+3×4+4×5+…+n(n+1)=$\frac{1}{3}$n(n+1)(n+2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.

(1)如图1所示,若A的坐标是(-3,0),点B的坐标是(0,1),求点C的坐标;
(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA,OD,CD之间等量关系;
(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴 于F,问CF与AE有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若7-2x和5-x的值互为相反数,则x的值为(  )
A.4B.2C.-12D.-7

查看答案和解析>>

同步练习册答案