精英家教网 > 初中数学 > 题目详情
已知二次函数的解析式为,则该二次函数图象的顶点坐标是(   )
A.(-2,1)B.(2,1)C.(2,-1)D.(1,2)
B.

试题分析:直接根据二次函数的的顶点式写出顶点坐标(2,1),故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当未租出的车将增加1辆,每辆车的日租金每增加50元,;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)
(1)公司每日租出x辆车时,每辆车的日租金为      元(用含x的代数式表示);
(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?
(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象. P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=       

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某农户计划利用现有的一面墙(墙长8米),再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度).

(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如右图,已知二次函数y=ax2+bx+c的图象过A(-3,0),对称轴为直线x=-1,下列结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b;⑤a-b>m(am+b)(m≠-1)其中正确的结论有(     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线上部分点的横坐标x,纵坐标y的对应值如下表:




0
1
2

y

0
4
6
6
4

由上表可知,下列说法正确的个数是 (       )
①抛物线与x轴的一个交点为   ②抛物线与轴的交点为
③抛物线的对称轴是:       ④在对称轴左侧y随x增大而增大
A.1     B.2     C.3     D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数图像如图所示,下列结论:①,②,③,④方程的解是-2和4,⑤不等式的解集是,其中正确的结论有(   )
A.2个B.3个 C.4个D.5个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将二次函数y=x2-1的图象向右平移1个单位长度,再向上平移3个单位长度所得的图象解析式为(  )
A.y=(x﹣1)2-4 B.y=(x+1)2﹣4
C.y=(x-1)2+2 D.y=(x+1)2+2

查看答案和解析>>

同步练习册答案