精英家教网 > 初中数学 > 题目详情

【题目】如图,正比例函数与反比例函数的图象相交于AB、两点,分别以AB、两点为圆心,画与x轴相切的两个圆,若点A的坐标为(21),则图中两个阴影部分面积的和是(  )

A. B. C. π D.

【答案】C

【解析】

先利用切线的性质得到⊙A的半径为1,再根据反比例函数图象的对称性得到点B的坐标为(-2-1),同理得到⊙B的半径为1,则可判断⊙A与⊙B关于原点中心对称,⊙A的阴影部分与⊙B空白的部分的面积相等,所以图中两个阴影部分面积的和等于⊙A的面积,然后根据圆的面积公式计算.

解:∵点A的坐标为(21),且⊙Ax轴相切,
∴⊙A的半径为1
∵点A和点B是正比例函数与反比例函数的图象的交点,
∴点B的坐标为(-2-1),
同理得到⊙B的半径为1
∴⊙A与⊙B关于原点中心对称,
∴⊙A的阴影部分与⊙B空白的部分完全重合,
∴⊙A的阴影部分与⊙B空白的部分的面积相等,
∴图中两个阴影部分面积的和=π12
故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为1的扇形AOB中,∠AOB90°,点C是弧AB上的一个动点(不与点AB重合)ODBCOEAC,垂足分别为DE

1)当时,求线段OD的长;

2)在△DOE中是否存在长度保持不变的边?如果存在,请指出是哪条边,并求其长度;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点BC两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).

(1)请直接写出BC两点的坐标及抛物线的解析式;

(2)过点PPEBC,交抛物线于点E,连接BE,当t为何值时,∠PBE=OCD

(3)点Qx轴上的动点,过点PPMBQ,交CQ于点M,作PNCQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtAOB的直角边OAx轴上,OA=2AB=1,将RtAOB绕点O逆时针旋转90°得到RtCOD,抛物线经过BD两点.

1)求二次函数的解析式;

2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ACBC5AB8ABx轴,垂足为A,反比例函数y(x0)的图象经过点C,交AB于点D

(1)OAAB,求k的值;

(2)BCBD,连接OC,求△OAC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数yax2ay=﹣a≠0)在同一直坐标系中的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数ykx与反比例函数yx0)的图象有个交点AABx轴于点B.平移正比例函数ykx的图象,使其经过点B20),得到直线l,直线ly交于点C0,﹣3

1)求km的值;

2)点M是直线OA上一点过点MMNAB,交反比例函数yx0)的图象于点N,若线段MN3,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点Ax轴的正半轴上,顶点Cy轴的正半轴上,点B在双曲线x0)上,点D在双曲线x0)上,点D的坐标是 33

1)求k的值;

2)求点A和点C的坐标.

查看答案和解析>>

同步练习册答案