15£®Èçͼ¢ÙÊÇÒ»¸ö³¤Îª2m¡¢¿íΪ2nµÄ³¤·½ÐΣ¬ÑØͼÖÐÐéÏßÓüôµ¶¾ù·Ö³ÉËÄ¿éС³¤·½ÐΣ¬È»ºó°´Í¼¢ÚµÄÐÎ×´Æ´³ÉÒ»¸öÕý·½ÐΣ®

£¨1£©ÇëÓÃÁ½ÖÖ²»Í¬µÄ·½·¨Çóͼ¢ÚÖÐÒõÓ°²¿·ÖµÄÃæ»ý£®
·½·¨1£º£¨m-n£©2·½·¨2£º£¨m+n£©2-4mn
£¨2£©¹Û²ìͼ¢ÚÇëÄãд³öÏÂÁÐÈý¸ö´úÊýʽ£º£¨a+b£©2£¬£¨a-b£©2£¬abÖ®¼äµÄµÈÁ¿¹Øϵ£®£¨a-b£©2=£¨a+b£©2-4ab
£¨3£©¸ù¾Ý£¨2£©ÌâÖеĵÈÁ¿¹Øϵ£¬½â¾öÈçÏÂÎÊÌ⣺
Èç¹ûa+b=7£¬ab=-5£¬Çó£¨a-b£©2µÄÖµ£®

·ÖÎö £¨1£©¸ù¾ÝͼÐÎÖи÷¸ö²¿·ÖµÄÃæ»ýµÃ³ö¼´¿É£»
£¨2£©¸ù¾Ý£¨1£©ÖеĽá¹û¼´¿ÉµÃ³ö´ð°¸£»
£¨3£©Ïȸù¾Ý£¨2£©µÄ½á¹û½øÐбäÐΣ¬ÔÙ´úÈëÇó³ö¼´¿É£®

½â´ð ½â£º£¨1£©Í¼ÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ£¨m-n£©2»ò£¨m+n£©2-4mn£¬
¹Ê´ð°¸Îª£º£¨m-n£©2£¬£¨m+n£©2-4mn£»

£¨2£©£¨a-b£©2=£¨a+b£©2-4ab£¬
¹Ê´ð°¸Îª£º£¨a-b£©2=£¨a+b£©2-4ab£»

£¨3£©¡ßa+b=7£¬ab=-5£¬
¡à£¨a-b£©2=£¨a+b£©2-4ab=72-4¡Á£¨-5£©=69£®

µãÆÀ ±¾Ì⿼²éÁËÍêȫƽ·½¹«Ê½µÄÓ¦Óã¬ÄÜÊì¼ÇÍêȫƽ·½¹«Ê½Êǽâ´ËÌâµÄ¹Ø¼ü£¬×¢Ò⣺£¨a+b£©2=a2+2ab+b2£¬£¨a-b£©2=a2-2ab+b2£¬£¨a-b£©2=£¨a+b£©2-4ab£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ1£¬Ö±Ïßl£ºy=$\frac{3}{4}$x+mÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãAºÍµãB£¨0£¬-1£©£¬Å×ÎïÏßy=$\frac{1}{2}$x2+bx+c¾­¹ýµãB£¬ÓëÖ±ÏßlµÄÁíÒ»¸ö½»µãΪC£¨4£¬n£©£®
£¨1£©ÇónµÄÖµºÍÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãDÔÚÅ×ÎïÏßÉÏ£¬DE¡ÎyÖá½»Ö±ÏßlÓÚµãE£¬µãFÔÚÖ±ÏßlÉÏ£¬ÇÒËıßÐÎDFEGΪ¾ØÐΣ¨Èçͼ2£©£¬ÉèµãDµÄºá×ø±êΪt£¨0£¼t£¼4£©£¬¾ØÐÎDFEGµÄÖܳ¤Îªp£¬ÇópÓëtµÄº¯Êý¹ØϵʽÒÔ¼°pµÄ×î´óÖµ£»
£¨3£©½«¡÷AOBÈÆƽÃæÄÚijµãMÐýת90¡ã»ò180¡ã£¬µÃµ½¡÷A1O1B1£¬µãA¡¢O¡¢BµÄ¶ÔÓ¦µã·Ö±ðÊǵãA1¡¢O1¡¢B1£®Èô¡÷A1O1B1µÄÁ½¸ö¶¥µãÇ¡ºÃÂäÔÚÅ×ÎïÏßÉÏ£¬ÄÇôÎÒÃǾͳÆÕâÑùµÄµãΪ¡°Âäµã¡±£¬ÇëÖ±½Óд³ö¡°Âäµã¡±µÄ¸öÊýºÍÐýת180¡ãʱµãA1µÄºá×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÒÑÖªÏ߶ÎAB=4£¬OΪABµÄÖе㣬PÊÇƽÃæÄÚµÄ-¸ö¶¯µã£¬ÔÚÔ˶¯¹ý³ÌÖб£³ÖOP=1²»±ä£¬Á¬½áBP£¬½«PBÈƵãPÄæʱÕëÐýת90¡ãµ½PC£¬Á¬½áBC¡¢AC£¬ÔòÏ߶ÎAC³¤µÄÈ¡Öµ·¶Î§ÊÇ$\sqrt{2}$¡ÜAC¡Ü3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ð¡Ã÷ºÍСӱ¼ÒסÔÚͬһµØÌúÕ¾¿ÚµÄͬһСÇøÄÚ£®ÐÇÆÚÌìÁ½È˸÷×ÔÈ¥ÄÏìøËÂÊé³ÇÂòÊ飮Сӱ³ËµØÌú£¬Ð¡Ã÷ÓÉ°Ö°Ö¿ªË½¼Ò³µÇ°Íù£®ÒÑÖª¸Ã¶Î˽¼Ò³µÐÐÊ»µÄ·Ïߺ͵ØÌú·ÏßÇ¡ºÃÔÚͬһֱÏßÉÏ£¬ÇÒ˽¼Ò³µµÄËٶȱȵØÌúÂý£®ËûÃÇÔçÉÏͬʱ³ö·¢£¬Éè³ö·¢ºóµÄʱ¼äΪt·ÖÖÓ£¬Ð¡Ã÷ºÍСӱ֮¼äµÄ¾àÀëΪS£¬SÓëtµÄ²¿·Öº¯ÊýͼÏóÈçͼËùʾ£®
£¨1£©Ìî¿Õ£º
¸ÃСÇøÓëÄÏìøËÂÏà¾à22ǧÃ×£®
˽¼Ò³µµÄËÙ¶ÈΪ1ǧÃ×/·ÖÖÓ£¬µØÌúµÄËÙ¶ÈΪ2ǧÃ×/·ÖÖÓ£¬
ͼÖеãAµÄʵ¼ÊÒâ˼ÊÇ£ºÐ¡Ó±³ËµØÌúÓÃ11·ÖÖÓµ½´ïÄÏìøË£¬´ËʱÓëСÃ÷Ïà¾à11ǧÃ×
£¨2£©Èç¹ûСÃ÷µ½´ïÊé³Çºó°ëСʱ£¬Á½ÈËͬʱ»Ø¼Ò£¬Ð¡Ó±ÂíÉϳËÉÏÁ˵ØÌú£¬¶øСÃ÷µÄ°Ö°Öȥͣ³µ³¡È¡³µºÄ·ÑÁË5·ÖÖÓ£¬ÇëÔÚÔ­×ø±êϵÖн«SÓëtµÄº¯ÊýͼÏó²¹³äÍêÕû£¨ÐèÒª±êÃ÷Ïà¹ØÊý¾Ý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ABΪԲOµÄÖ±¾¶£¬µãC¡¢EÔÚÔ²ÉÏ£¬ÇÒµãEÊÇ»¡BCµÄÖе㣬OE½»ÏÒBCÓÚµãD£¬µãFÔÚOEµÄÑÓ³¤ÏßÉÏ£¬ÇÒ¡ÏBCF=¡ÏBAC£¬BC=8£¬DE=2£®
£¨1£©ÇóÖ¤£ºCFÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©Çó¡ÑOµÄ°ë¾¶£»
£¨3£©ÇóCFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®£¨1£©·Ö½âÒòʽ£º2a3-12a2+8a
£¨2£©¼ÆË㣺$\frac{3}{a}$-$\frac{6}{1-a}$-$\frac{a+5}{{a}^{2}-a}$
£¨3£©½â·½³Ì£º$\frac{x-2}{x+2}$-$\frac{12}{{x}^{2}-4}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬Ò»´Îº¯Êýy=kx+bµÄͼÏóÓëÕý±ÈÀýº¯Êýy=2xµÄͼÏóƽÐÐÇÒ¾­¹ýµã£¨-1£¬3£©£¬ÔòbµÄÖµÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Ôڱ߳¤Îª1¸öµ¥Î»³¤¶ÈµÄСÕý·½ÐÎ×é³ÉµÄÍø¸ñÖУ¬¸ø³öÁ˸ñµãËıßÐÎABCD£¨¶¥µãÊÇÍø¸ñÏߵĽ»µã£©ºÍ¸ñµãO£®
£¨1£©°ÑËıßÐÎABCDƽÒÆ£¬Ê¹µÃ¶¥µãCÓëOÖغϣ¬»­³öƽÒƺóµÃµ½µÄËıßÐÎA2B1C1D1£»
£¨2£©°ÑËıßÐÎABCDÈÆOµã˳ʱÕëÐýת90¡ã£¬»­³öÐýתºóµÃµ½µÄËıßÐÎA2B2C2D2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2-x+c¾­¹ýµãQ £¨-2£¬4£©£¬ÇÒËüµÄ¶¥µãPµÄºá×ø±êΪ-1£®ÉèÅ×ÎïÏßÓëxÖáÏཻÓÚA£¬BÁ½µã£¬
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÇóA£¬BÁ½µãµÄ×ø±ê£»
£¨3£©ÉèPBÓëyÖá½»ÓÚCµã£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸