精英家教网 > 初中数学 > 题目详情
操作与探究:
把两块全等的等腰直角△ABC和△DEF叠放在一起,使△DEF的顶点E与△ABC的斜边中点O重合,其中∠BAC=∠EDF=90°,∠C=∠F=45°,AB=DE=4,将△ABC固定不动,让△DEF绕点O旋转.设射线ED与射线CA相交于点P,射线EF与射线AB相交于点Q.
(1)如图①,当射线EF经过点A,即点Q与点A重合时,试说明△COP∽△BAO,并求CP•BQ值.
(2)如图②,若△DEF绕点O逆时针旋转,当旋转角小于45°时,问CP•BQ的值是否改变?说明你的理由.
(3)若△DEF绕点O逆时针旋转,当旋转角大于45°而小于90°时,请在图③中画出符合条件的图形,并写出CP•BQ的值.(不用说明理由)
分析:(1)根据等腰直角三角形的性质证得△COP∽△BAO,并由相似三角形的对应边成比例来求CP•BQ值;
(2)、(3)不会改变,关键是还是证△COP∽△BQO,已知了一组45°角,关键是证(1)中的∠OPC=∠QOB,由于图2由图1旋转而得,根据旋转的性质可设旋转角为α,那么∠COP=45°+α,∠BQO=45°+α,因此两角相等.由此可证得两三角形相似.因此结论不变.
解答:(1)解:∵△ABC和△DEF都是等腰直角三角形,
∴∠B=∠C=∠F=∠FED=45°.
∵△ABC是等腰直角三角形,点O是斜边BC的中点,
∴∠BAO=∠FOD=45°,∠AOB=90°,
∴AB∥OD,
∴∠OPC=∠AOB=90°,
∴△COP∽△BAO,
∴CP:BO=CO:BA,即CP:BO=CO:BQ,
∴CP•BQ=BO×CO,
∵AB=AC=4,
∴BE=CE=2
2

∴CP•BQ=BO×CO=2
2
×2
2
=8;

(2)CP•BQ的值是8.
证明:在△COP与△BQO中,
∠C=∠B=45°,∠COP=45°+α,而∠BQO=180°-45°-(90°-α)=45°+α,
∴∠COP=∠BQO,
∴△COP∽△BQO,
CP:BO=CO:BQ,
∴CP•BQ=BO×CO,
∵AB=AC=4,
∴BE=CE=2
2

∴CP•BQ=BO×CO=2
2
×2
2
=8;

(3)解:如图,同理可说明
CP•BQ=8.
点评:本题主要考查了相似三角形的判定和性质、等腰直角三角形的性质以及旋转的性质等知识的综合应用,有一定难度,要对各部分知识都要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•临汾二模)操作与证明
把两个全等的含45°角的三角板按如图所示的位置放置,使B、A、D在一条直线上,C、A、E在一条直线上,过点C作CM⊥BD于M,过点E作EF∥BD;直线CM与EF相交于点F.
(1)求证:△CEF是等腰直角三角形.
猜想与发现
(2)在图1的条件下,CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD

(3)如图2若把图1中Rt△ADE换为Rt△ABC不全等但相似的三角板时,其他条件不变,此时CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD

拓展与探究
(4)如图3若将图1中的两块三角板换成任意两个全等的直角三角形(Rt△ABC≌Rt△DAE),使锐角顶点A重合,点C、A、E在一条直线上,连接BD交AC于G,过点C作CM⊥BD于M,过点E作EF∥BD,直线CM与EF于点F,图1中CF与BD的数量关系还成立吗?若成立,请加以证明;若不成立,请说明你的理由.

查看答案和解析>>

同步练习册答案