精英家教网 > 初中数学 > 题目详情
9.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地,下列函数图象能表达这一过程的是(  )
A.B.C.D.

分析 因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.

解答 解:∵400×5=2000(米)=2(千米),
∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米
而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B
又∵回到原出发地”表示终点的纵坐标为0,
∴排除选项D,
故:选C

点评 本题考查了函数的图象,解题的关键是理解函数图象的意义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.计算:
(1)(-$\frac{1}{3}$)100×3101-(π-3)0-(-2)-2    
(2)(a+2b)(a-2b)+(a+2b)2-4ab.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在?ABCD中,AC,BD相交于点O,过点O作直线EF,GH分别交平行四边形的四条边于E、G、F、H四点,连结EG、GH、FH、HE
(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是菱形;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是菱形;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在?ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.(请你用两种方法证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,将一个正方形纸片AOCD,放置在平面直角坐标系中,点A(0,4),点O(0,0),点D在第一象限.点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点O落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接OP,OH.设P点的横坐标为m.
(Ⅰ)若∠APO=60°,求∠OPG的大小;
(Ⅱ)当点P在边AD上移动时,△PDH的周长l是否发生变化?若变化,用含m的式子表示l;若不变化,求出周长l;
(Ⅲ)设四边形EFGP的面积为S,当S取得最小值时,求点P的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地(  )
A.100千米B.120千米C.180千米D.200千米

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.8的立方根是(  )
A.2B.±2C.$2\sqrt{2}$D.$±2\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.不等式组$\left\{\begin{array}{l}{x>2}\\{x-6≤0}\end{array}\right.$的解集在数轴上表示为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案