精英家教网 > 初中数学 > 题目详情
7.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=65°,则∠EGF应为50°.

分析 根据两直线平行,内错角相等可得∠2=∠1,再根据翻折变换的性质和平角的定义求出∠3,然后根据两直线平行,内错角相等可得∠EGF=∠3.

解答 50°;
解:∵长方形的对边AD∥BC,
∴∠2=∠1=65°,
由翻折的性质和平角的定义可得∠3=180°-2∠2=180°-2×65°=50°,
∵AD∥BC,
∴∠EGF=∠3=50°.
故答案为:50°.

点评 本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,正方形ABCD的边长为4,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF,则线段OF的长度为$\sqrt{6}$-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如果m与n的平均数是4,那么m+1与n+5的平均数是7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.△ABC是⊙O的内接三角形,AB=AC,点P是$\widehat{AB}$上一点,连接PA、PB、PC.
(1)如图1,若∠ABC=60°,求证:PA+PB=PC;
(2)如图2,点Q在$\widehat{AC}$上,且满足$\widehat{PQ}$=$\widehat{CQ}$,直线PA交BQ延长线于点H,求证:∠H=$\frac{1}{2}$∠BCP;
(3)如图3,在(2)的条件下,设BQ交PC于点M,若P为$\widehat{AB}$的中点,sin∠BPC=$\frac{24}{25}$,CM=24$\sqrt{10}$,求PM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用50张长为6宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法:
方法一:如图2,每张卡纸剪出3个立方体表面展开图;
方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).   

设用x张卡纸做立方体,其余卡纸做长方体,共做两种模型y个.
(1)在图3中画出第二个长方体表面展开图,用阴影表示;
(2)写出y关于x的函数解析式;
(3)设每只模型(包括立方体和长方体)均获利为w(元),w满足函数w=1.6-$\frac{x}{100}$若想将模型作为教具卖出,且制作的长方体的个数不超过立方体的个数,则应该制作立方体和长方体各多少个,使获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知,如图①,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,点P为线段BC上的一动点(不运动到C,B两点)过点P作PQ⊥BC交AB于点Q,在AC边上取一点D,使QD=QP,连结DP,设CP=x
(1)求QP的长,用含x的代数式表示.
(2)当x为何值时,△DPQ为直角三角形?
(3)记点D关于直线PQ的对称点为点D′.
①当点D′落在AB边上时,求x的值;
②在①的条件下,如图②,将此时的△DPQ绕点P顺时针旋转一个角度α(0°<α<∠DPB),在旋转过程中,设DP所在的直线与直线AB交于点M,与直线AC交于点N,是否存在这样的M,N两点,使△AMN为等腰三角形?若存在,求出此时AN的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.写出下列命题的逆命题,并判断真假
(1)若x=2,则x2=4;
(2)对顶角相等;
(3)等边三角形的三个内角都是60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解方程:$\frac{3}{x-1}$-$\frac{x+2}{{x}^{2}-x}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,直线11:y1=k1x+b与反比例y=$\frac{m}{x}$相交于A(-1,6)和B(-3,a),直线12:y2=k2x与反比例函数y=$\frac{m}{x}$相交于A、C两点,连接OB.
(1)求反比例函数的解析式和B、C两点的坐标;
(2)根据图象,直按写出当k1x+b>$\frac{m}{x}$时x的取值范围;
(3)求△AOB的面积;
(4)点P是反比例函数第二象限上一点,且点P的横坐标大于-3,小于-1,连接PO并延长,交反比例函致图象于点Q.
①试判断四边形APCQ的形状;
②当四边形APCQ的面积为10时,求点P的坐标.

查看答案和解析>>

同步练习册答案