精英家教网 > 初中数学 > 题目详情
2.如图,在6×6的正方形网格中,每个小正方形顶点叫格点,四边形ABCD的顶点和点Q都在格点上,按要求解答下列问题:
(1)分别画出四边形ABCD绕着点O顺时针、逆时针旋转90°得到的四边形A1B1C1D1、A2B2C2D2
(2)四边形A1B1C1D1与四边形A2B2C2D2关于点O成中心对称.

分析 (1)作相等的角,在角的边上截取相等的线段,找到对应点,顺次连接得出旋转后的图形.
(2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.

解答 解:(1)如图所示,四边形A1B1C1D1、A2B2C2D2即为所求;

(2)∵A1A2,B1B2,C1C2,D1D2都经过点O,并且被点O平分,
∴四边形A1B1C1D1与四边形A2B2C2D2关于点O成中心对称.
故答案为:中心.

点评 本题主要考查了利用旋转变换进行作图以及中心对称的定义,解题时注意:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.(1)计算:$\sqrt{9}$-|-4|+2cos60°-(-$\frac{1}{2}$)-1
(2)因式分解:(x-y)(x-4y)+xy.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知扇形的面积为12πcm2,半径为12cm,则该扇形的圆心角是30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.数学课上,老师提出如下问题:已知点A,B,C是不在同一直线上三点,求作一条过点C的直线l,使得点A,B到直线l的距离相等.
小明的作法如下:
①连接线段AB;
②分别以A,B为圆心,以大于$\frac{1}{2}$AB为半径画弧,两弧交于M、N两点;
③做直线MN,交线段AB于点O;
④做直线CO,则CO就是所求作的直线l老师肯定了小明的作法,根据上面的作法回答下列问题:
(1)小明利用尺规作图作出的直线MN是线段AB的垂直平分线;点O是线段AB的中点;
(2)要证明点A,点B到直线l的距离相等,需要在图中画出必要的线段,请在图中作出辅助线,说明作法,并说明线段AE的长是点A到直线l的距离,线段BF的长是点B到直线l的距离;
(3)证明点A,B到直线l的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.分式方程$\frac{3}{x-2}$-$\frac{x-1}{2-x}$=2的解是x=6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在菱形ABCD中,tanA=$\sqrt{3}$,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=$\frac{\sqrt{3}}{4}$CG2;其中正确结论的序号为(1)(3)(4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在边长为3的正方形ABCD中,直角∠MAN的两边AM、AN重叠在正方形的两邻边上,现将直角∠MAN绕顶点A旋转.
(1)如图2,AM与边长BC相交于点E,AN与边长CD的延长线相交于点F,求证:BE=DF;
(2)如图3,AM、AN与BC、CD的延长线分别相交于点E、F,AM与CD相交于点P,求△APF与△CPE面积的差;
(3)若AM、AN与直线BD分别相交于点G、H,且BG=$\sqrt{2}$,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知,如图,抛物线y=ax2+x+c与x轴交于点A(-1,0),B(3,0).
(1)试确定抛物线的函数表达式;
(2)已知点C是抛物线在x轴上方的动点,求△OBC的面积的最大值,并求出此时点C的坐标;
(3)在(2)的条件下,若点P是线段BC上的动点,求当△OPC与△OBC相似时的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)计算:$\sqrt{4}$+(π-2)0-|-5|+(-1)2012+($\frac{1}{3}$)-2
(2)解方程和不等式
①$\frac{5}{x+2}$=$\frac{3}{x}$
②$\left\{\begin{array}{l}{4x+6>1-x}\\{3(x-1)≤x+5}\end{array}\right.$.

查看答案和解析>>

同步练习册答案