精英家教网 > 初中数学 > 题目详情
(2004•金华)如图,已知抛物线经过点A(-3,0),B(0,3),C(2,0)三点.
(1)求此抛物线的解析式;
(2)如果点D(1,m)在这条抛物线上,求m的值的点D关于这条抛物线对称轴的对称点E的坐标,并求出tan∠ADE的值.

【答案】分析:(1)设出交点式解析式,把B坐标代入即可;
(2)把点D的横坐标代入(1)中所求的解析式,就能求得m.进而求得点E.点D和E的纵坐标相等,那么DE∥AC,∴∠ADE=∠DAC,求得tan∠DAC的值就求得了tan∠ADE的值.
解答:解:(1)设所求函数解析式为y=a(x+3)(x-2)
∵B(0,3)在所求函数解析式上
∴-6a=3,
a=-0.5
∴y=-0.5×(x+3)(x-2);

(2)∵D(1,m)在这条抛物线上
∴当x=1时,m=-0.5×4×(-1)=2
∵对称轴x==-0.5
∴点E的横坐标为-0.5-[1-(-0.5)]=-2.
∴点E的坐标为(-2,2)
做DF⊥AC于点F,
∵点D和E的纵坐标相等,
∴DE∥AC,
∴∠ADE=∠DAC
∴tan∠ADE=tan∠DAC=DF:AF=2:[1-(-3)]=
点评:本题考查用待定系数法求函数解析式,出现与x轴的两个交点时,一般应用交点式表示函数解析式.注意把所求的角的转移为易求得的三角函数的角.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•金华)如图,已知抛物线经过点A(-3,0),B(0,3),C(2,0)三点.
(1)求此抛物线的解析式;
(2)如果点D(1,m)在这条抛物线上,求m的值的点D关于这条抛物线对称轴的对称点E的坐标,并求出tan∠ADE的值.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2004•金华)如图在平面直角坐标系内,点A与C的坐标分别为(4,8),(0,5),过点A作AB⊥x轴于点B,过OB上的动点D作直线y=kx+b平行于AC,与AB相交于点E,连接CD,过点E作直线EF∥CD,交AC于点F.
(1)求经过点A,C两点的直线解析式;
(2)当点D在OB上移动时,能否使四边形CDEF成为矩形?若能,求出此时k、b的值;若不能,请说明理由;
(3)如果将直线AC作向下平移,交y轴于点C′,交AB于点A′,连接DC′,过点E作EF′∥DC′,交A′C′于点F′,那么能否使四边形C′DEF′成为正方形?若能,请求出此时正方形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年浙江省金华市中考数学试卷(解析版) 题型:解答题

(2004•金华)如图在平面直角坐标系内,点A与C的坐标分别为(4,8),(0,5),过点A作AB⊥x轴于点B,过OB上的动点D作直线y=kx+b平行于AC,与AB相交于点E,连接CD,过点E作直线EF∥CD,交AC于点F.
(1)求经过点A,C两点的直线解析式;
(2)当点D在OB上移动时,能否使四边形CDEF成为矩形?若能,求出此时k、b的值;若不能,请说明理由;
(3)如果将直线AC作向下平移,交y轴于点C′,交AB于点A′,连接DC′,过点E作EF′∥DC′,交A′C′于点F′,那么能否使四边形C′DEF′成为正方形?若能,请求出此时正方形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年浙江省金华市中考数学试卷(解析版) 题型:解答题

(2004•金华)如图在四边形ABCD中,DE∥BC,交AB于点E,点F在AB上,请你再添加一个条件(不再标注或使用其他字母),使△FCB∽△ADE,并给出证明.

查看答案和解析>>

同步练习册答案