精英家教网 > 初中数学 > 题目详情
已知:如图所示,在△ABC中,BC=100,边BC上的高为50.在这个三角形内有一个内接矩形PQRS.
(1)若矩形的长PQ与宽PS的比是3:1,求这个矩形的长与宽;
(2)当这个矩形面积最大时,它的长与宽各是多少?
分析:(1)设矩形的长PQ=x,再根据相似三角形的判定定理得出△APQ∽△ABC,根据相似三角形的对应边成比例可用x表示出AE及DE的长,再根据长PQ与宽PS的比是3:1即可得出x的值,故可得出结论;
(2)根据(1)中用x表示出的矩形的长与宽可得出矩形面积的表达式,故可得出它的长与宽.
解答:解:(1)设矩形的长PQ=x,
∵PQ∥BC,BC=100,边BC上的高为50,
∴△APQ∽△ABC,
AE
AD
=
PQ
BC
,即
AE
50
=
x
100
,解得AE=
1
2
x,
∴DE=PS=50-
1
2
x,
∵矩形的长PQ与宽PS的比是3:1,
∴3(50-
1
2
x)=x,解得x=60,
∴PQ=60,PS=20;

(2)∵由(1)知PQ=x,PS=50-
1
2
x,
∴S矩形=PQ•PS=x•(50-
1
2
x)=-
1
2
x2+50x(0<x<100),
当x=-
b
2a
=-
50
2×(-
1
2
)
=50时,这个矩形面积最大,
∵x=50在定义域内,
∴当x=50时,这个矩形面积最大,
∴此时PQ=50,PS=50-
1
2
×50=25.
点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读下述说明过程,讨论完成下列问题:
已知:如图所示,在?ABCD中,∠A的平分线与BC相交于点E,∠B的平分线与AD相交于点F,AE与BF相交于点O,试说明四边形ABEF是菱形.
证明:(1)∵四边形ABCD是平行四边形,
(2)∴AD∥BC.
(3)∴∠ABE+∠BAF=180°.
(4)∵AE、BF分别平分∠BAF、∠ABE,
(5)∴∠1=∠2=
1
2
∠BAF,∠3=∠4=
1
2
∠ABE.
(6)∴∠1+∠3=
1
2
(∠BAF+∠ABE)=
1
2
×180°=90°.
(7)∴∠AOB=90°.
(8)∴AE⊥BF.
(9)∴四边形ABEF是菱形.

问:①上述说明过程是否正确?
答:
 

②如果错误,指出在第
 
步到第
 
步推理错误,应在第
 
步后添加如下证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在矩形ABCD中,E为DC上的一点,BF⊥AE于点F,且BF=BC,求证:AE=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm.两个动点P、Q分别从B、C两点精英家教网同时出发,其中点P以1厘米/秒的速度沿着线段BC向点C运动,点Q以2厘米/秒的速度沿着线段CA向点A运动.
(1)P、Q两点在运动过程中,经过几秒后,△PCQ的面积等于4厘米2?经过几秒后PQ的长度等于5厘米?
(2)在P、Q两点在运动过程中,四边形ABPQ的面积能否等于11厘米2?试说明理由.
(3)经过几秒时以C、P、Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,在平面直角坐标系中,函数y=
mx
(x>0,m是常数)的图象经过点A(1,4)、点B(a,b),其中a>1,直线AB交y轴于点E.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,AC与BD相交于精英家教网点M,连接DC.
(1)求m的值;
(2)求证:四边形ACDE为平行四边形;
(3)若AB=CD,求直线AB的函数解析式.

查看答案和解析>>

同步练习册答案