A
分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.
解答:由解析式y=kx2-k可得:抛物线对称轴x=0;
A、当k<0时,物线开口方向向下、双曲线的两支分别位于二、四象限、抛物线与y轴的交点为在y轴的正半轴上;本图象符合题意,正确;
B、当k>0时,物线开口方向向上、双曲线的两支分别位于一、三象限;当k>0抛物线会与y轴的交点为在y轴的负半轴上,本图象与k的取值相矛盾,错误;
C、当k<0时,物线开口方向向下、双曲线的两支分别位于二、四象限;当k<0抛物线会与y轴的交点为在y轴的正半轴上,本图象与k的取值相矛盾,错误;
D、当k>0时,双曲线的两支分别位于一、三象限而物线开口方向应该向上,本图象与k的取值相矛盾,错误.
故选A.
点评:解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.