精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知梯形ABCD中,AD∥BC,BC=3AD,E是腰AB上的一点,连接CE,
(1)如果CE⊥AB,AB=CD,BE=3AE,求∠B的度数;
(2)设△BCE和四边形AECD的面积分别为S1和S2,且2S1=3S2,试求
BEAE
的值.
分析:(1)首先延长BA与CD,然后根据面积的关系求得△MBC是等边三角形,即可得∠B为60°,
(2)可利用面积法求解,因为如果三角形的高相等,则其面积的比等于其底的比,所以可求得AE与BE的比.
解答:解:(1)延长BA、CD相交于点M.如图1:
∵AD∥BC,
∴△MAD∽△MBC,精英家教网
AD
BC
=
MA
MB
=
1
3

∴MB=3MA.设MA=2x,则MB=6x.
∴AB=4x.
∵BE=3AE,
∴BE=3x,AE=x.
∴BE=EM=3x,E为MB的中点.
又∵CE⊥AB,
∴CB=MC.
又∵MB=MC,
∴△MBC为等边三角形.
∴∠B=60°;

(2)延长BA、CD相交于点F,如图2:精英家教网
∵AD∥BC,
∴△FAD∽△FBC,
S△FAD
S△FBC
=(
AD
BC
)2=
1
9

设S△FAD=S3=a,则S△FBC=9a,S1+S2=8a,
又∵2S1=3S2
S1=
24
5
a,S2=
16
5
a,S3=a.
∵△EFC与△CEB等高,
FE
EB
=
S△FEC
S△ECB
=
S3+S2
S1
=
7
8

设FE=7k,则BE=8k,FB=15k,
∴FA=
1
3
FB=5k.
∴AE=7k-5k=2k.
BE
AE
=4.
点评:本题考查了如果三角形的高相等,则面积比等于其底边的比.解此题的关键是准确地作出辅助线与数形结合思想的应用,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,则BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,点P从点A开始沿AB边向点B以3cm/s的速度移动,点Q从点B开始沿BC边向点C以1cm/s的速度移动,P,Q分别从A,B同时出发,当其中一精英家教网点到达终点时,另一点也随之停止.过Q作QD∥AB交AC于点D,连接PD,设运动时间为t秒时,四边形BQDP的面积为s.
(1)用t的代数式表示QD的长.
(2)求s关于t的函数解析式,并求出运动几秒梯形BQDP的面积最大?最大面积是多少?
(3)连接QP,在运动过程中,能否使△DPQ为等腰三角形?若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•遂宁)如图,已知等腰△ABC的面积为4cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为
3
3
 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解

(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
相等
相等
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.

查看答案和解析>>

同步练习册答案