精英家教网 > 初中数学 > 题目详情
精英家教网已知如图,⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,⊙O2的弦O1C交AB于D,交⊙O1于E.
求证:(l)O1A2=O1D•O1C;   (2)BE平分∠ABC.
分析:(1)由01A=O1B,根据等弧所对的圆周角相等,即可求得∠O1AB=∠O1CA,又由∠AO1C=∠DO1A,则可证得△AO1C∽△DO1A,根据相似三角形的对应边成比例,即可求得O1A2=O1D•O1C;
(2)由∠ADO1=∠CDB,∠O1AB=∠O1CB,易得∠AO1D=∠ABC,又由同弧所对的圆周角等于它对圆心角的一半,即可求得∠ABC=2∠ABE,则可得BE平分∠ABC.
解答:证明:(1)∵01A=O1B,
∴∠ACO1=∠BCO1
∵∠O1AB=∠O1CB,
∴∠O1AB=∠O1CA,
∵∠AO1C=∠DO1A,
∴△AO1C∽△DO1A,
O1A
O1D
=
O1C
O1A

∴O1A2=O1D•O1C;

(2)∵∠ADO1=∠CDB,∠O1AB=∠O1CB,
又∵∠AO1D=180°-∠ADO1-∠O1AB,∠ABC=180°-∠CDB-∠O1CB,
∴∠AO1D=∠ABC,
∵∠AO1D=2∠ABE,
∴∠ABC=2∠ABE,
∴BE平分∠ABC.
点评:此题考查了相似三角形的判定与性质,圆周角与圆心角的性质等知识.此题综合性较强,图形较复杂,但难度适中,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知如图,⊙O1与⊙O2相交于A、B两点,O2O1,O1O2的延长线分别交⊙O1于点C,交⊙O2于点F,CA、CB的延长线交⊙O2于D、E,连接EF、DF.求证:DF=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:⊙O1与⊙O2相交于AB两点,过点A、B的直线分别与⊙O1交于C、E,与⊙O2交于D、F,连接CE、DF.
求证:CE∥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知如图,⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,⊙O2的弦O1C交AB于D,交⊙O1于E.
求证:(l)O1A2=O1D•O1C;  (2)BE平分∠ABC.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2002•内江)已知如图,⊙O1与⊙O2相交于A、B两点,O2O1,O1O2的延长线分别交⊙O1于点C,交⊙O2于点F,CA、CB的延长线交⊙O2于D、E,连接EF、DF.求证:DF=EF.

查看答案和解析>>

同步练习册答案