精英家教网 > 初中数学 > 题目详情
1.如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于(  )
A.20B.4$\sqrt{13}$C.10D.2$\sqrt{13}$

分析 根据矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,利用三角形中位线定理求证EF=GH=FG=EH,然后利用四条边都相等的平行四边形是菱形.根据菱形的性质来计算四边形EFGH的周长即可.

解答 解:连接BD,AC.
在矩形ABCD中,AB=4,AD=6,∠DAB=90°,则由勾股定理易求得BD=AC=2$\sqrt{13}$.
∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,
∴EF为△ABC的中位线,
∴EF=$\frac{1}{2}$AC=$\sqrt{13}$,EF∥AC,
又GH为△BCD的中位线,
∴GH=$\frac{1}{2}$AC=$\sqrt{13}$,GH∥AC,
∴HG=EF,HG∥EF,
∴四边形EFGH是平行四边形.
同理可得:FG=$\frac{1}{2}$BD=$\sqrt{13}$,EH=$\frac{1}{2}$AC=$\sqrt{13}$,
∴EF=GH=FG=EH=$\sqrt{13}$,
∴四边形EFGH是菱形.
∴四边形EFGH的周长是:4EF=4$\sqrt{13}$,
故选:B.

点评 本题考查的是考查学生对菱形的判定、三角形中位线定理、和矩形的性质的理解和掌握,证明此题的关键是利用三角形中位线定理求证EF=GH=FG=EH.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图1,已知抛物线y=$\frac{3}{8}$x2-$\frac{3}{4}$x-3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,顶点为D
(1)求出点A,B,D的坐标;
(2)如图1,若线段OB在x轴上移动,且点O,B移动后的对应点为O′,B′.首尾顺次连接点O′、B′、D、C构成四边形O′′B′DC,请求出四边形O′B′DC的周长最小值.
(3)如图2,若点M是抛物线上一点,点N在y轴上,连接CM、MN.当△CMN是以MN为直角边的等腰直角三角形时,直接写出点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.感知:如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一条直线上,连接AE.
(1)∠AEC的度数为120°;
(2)线段AE、BD之间的数量关系为AE=BD.
拓展探究
如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.
解决问题:
如图3,△ABC和△DCE都是等腰三角形,∠ACB=∠DCE=36°,点B、D、E在同一条直线上,则∠EAB+∠ECB=180度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若m•23=26,则m=(  )
A.2B.6C.4D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各式中,与(1-a)(-a-1)相等的是(  )
A.a2-1B.a2-2a+1C.a2-2a-1D.a2+1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若△ABC的三边a,b,c满足条件:$\sqrt{a-3}$+$\sqrt{b-4}$+$\sqrt{c-5}$=0,则△ABC是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,△ABC中,AB=15,AC=13,点D是BC上一点,且AD=12,BD=9,点E、F分别是AB、AC的中点,则△DEF的周长是21.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列说法中正确的是(  )
A.$\frac{1}{\sqrt{2}}$化简后的结果是$\frac{\sqrt{2}}{2}$B.9的平方根为3
C.$\sqrt{8}$是最简二次根式D.-27没有立方根

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.列方程或方程组解应用题:
如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为12m2的矩形空地(空白处),求原正方形空地的边长.

查看答案和解析>>

同步练习册答案