精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=x2bxcx轴交于AB两点(A点在B点左侧),与y
轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D
⑴求抛物线的函数表达式;
⑵求直线BC的函数表达式;
⑶点Ey轴上一动点,CE的垂直平分线交CE于点F,交抛物线于PQ两点,且点P在第三象限.
①当线段PQ=AB时,求tanCED的值;
②当以点CDE为顶点的三角形是直角三角形时,请直接写出点P的坐标.
温馨提示:考生可以根据第⑶问的题意,在图中补出图形,以便作答.
⑴∵抛物线的对称轴为直线x=1,

b=-2.
∵抛物线与y轴交于点C(0,-3),
c=-3,
∴抛物线的函数表达式为y=x2-2x-3.
⑵∵抛物线与x轴交于AB两点,
y=0时,x2-2x-3=0.
x1=-1,x2=3.
A点在B点左侧,
A(-1,0),B(3,0)
设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kxm
,∴
∴直线BC的函数表达式为y=x-3.
⑶①∵AB=4,PO=AB
PO=3
POy
POx轴,则由抛物线的对称性可得点P的横坐标为
P

F(0,),
FC=3-OF=3-=
PO垂直平分CE于点F
CE=2FC=
∵点D在直线BC上,
∴当x=1时,y=-2,则D(1,-2).
过点DDGCE于点G
DG=1,CG=1,
GE=CECG=-1=
RtEGD中,tanCED=
P1(1-,-2),P2(1-).解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案