精英家教网 > 初中数学 > 题目详情
5.为了响应市政府“创建文明城市,建设美丽莆田”的号召,某街道决定从备选的五种树中选购一种进行栽种.工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:
请根据所给信息解答以下问题:
(1)这次参与调查的居民人数为200人;
(2)扇形统计图中“枫树”所在扇形的圆心角度数为36°;
(3)已知该街道辖区内现有居民3万人,请你估计这3万人中喜欢玉兰树的有多少人?

分析 (1)用桂花树的人数除以其占总人数的百分比可得;
(2)用360度乘以样本中枫树所占比例即可得;
(3)用总人数乘以样本中玉兰树所占比例即可得.

解答 解:(1)这次参与调查的居民人数为75÷37.5%=200(人),
故答案为:200;

(2)扇形统计图中“枫树”所在扇形的圆心角度数为360°×$\frac{20}{200}$=36°,
故答案为:36°;

(3)3×$\frac{200-(50+75+25+20)}{200}$=0.45(万人),
答:估计这3万人中喜欢玉兰树的有0.45万人.

点评 本题主要考查了条形图和扇形图,在解题时要注意灵活应用条形图和扇形图之间的关系是本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.解方程:|3x+1|-|1-x|=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某体育馆有3个入口和3个出口,其示意图如下,参观者可从任意一个入口进入,参观结束后从任意一个出口离开
(1)用树状图表示,小明从进入到离开,对于入口和出口的选择共有多少种不同的结果?
(2)小明从入口1进入并从出口2离开的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知点P和点Q在数轴上的位置如图,设点P,Q,N对应的实数分别为p,q,n,且pq=n,则点N作数轴上的位置可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读下列材料,完成相应任务:
折纸三等分角
     三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一(三等分任意角、化圆为方、倍立方),即用圆规与直尺(没有刻度,只能做直线的尺子)把一任意角三等分,这问题曾吸引着许多人去研究,但无一成功.1837年法国数学家凡齐尔(1814~1848)运用代数方法证明了,仅用尺规不可鞥呢三等分角.
     如果作图工具没有限制,将条件放宽,将任意角三等分是可以解决的.下面介绍一种折纸三等分任意锐角的方法:
    (1)在正方形纸片上折出任意∠SBC,将正方形ABCD对折,折痕为记为MN,再将矩形MBCN对折,折痕记为EF,得到图(1);
    (2)翻折左下角使点B与EF上的点T重合,点M与SB上的点P重合,点E对折后的对应点记为Q,折痕为记为GH,得到图(2);
    (3)折出射线BQ,BT,得到图(3),则射线BQ,BT就是∠SBC的三等分线.
下面是证明BQ,BT是∠SBC三等分线的部分过程:
证明:过T作TK⊥BC,垂足为K,则四边形EBKT为矩形
根据折叠,得EB=QT,∠EBT=∠QTB,BT=TB
∴△EBT≌△QTB,
∴∠BQT=∠TEB=90°,
∴BQ⊥PT
学习任务:
(1)将剩余部分的证明过程补充完整;
(2)若将图(1)中的点S与点D重合,重复材料中的操作过程得到图(4),请利用图(4),直接写出tan15°=2-$\sqrt{3}$(不必化简)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,?ABCD的边AD与经过A,B,C三点的⊙O相切,sin∠D=$\frac{5}{13}$,AD=24,则⊙O的半径为$\frac{169}{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:线段AB⊥BM,垂足为B,点O和点A在直线BM的同侧,且tan∠OBM=2,AB=5,设以O为圆心,BO为半径的圆O与直线BM的另一个交点为C,直线AO与直线BM的交点为D,圆O为直线AD的交点为E.
(1)如图1,当点D在BC的延长线上时,设BC=x,CD=y,求y关于x的函数解析式,并写出定义域.
(2)在(1)的条件下,当BC=CE时,求BC的长;
(3)当△ABO是以AO为腰的等腰三角形时,求∠ADB的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:$\sqrt{12}$-2cos30°+(π-$\sqrt{2017}$)0-(-$\frac{1}{2}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,O为坐标原点,?OABC的边OA落在x轴正半轴上,顶点C(3,4),点P为对角线AC上一点,过点P分别作DE∥OC,FG∥OA分别交?OABC各边如图所示,反比例函数y=$\frac{k}{x}$图象过点D.
(1)若四边形DCOE的面积为4,求k的值;
(2)若四边形PDCF是菱形,求点B的坐标.

查看答案和解析>>

同步练习册答案