精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为SABCD和SBFDE,现给出下列命题
①若
SABCD
SBFDE
=
2+
3
2
,则tan∠EDF=
3
3
;②若DE2=BD•EF,则DF=2AD.则(  )
A、①是真命题,②是真命题
B、①是真命题,②是假命题
C、①是假命题,②是真命题
D、①是假命题,②是假命题
分析:①由已知先求出sin∠EDF,再求出tan∠EDF,确定是否真假命题.②由已知根据矩形、菱形的性质用面积法得出结论.
解答:精英家教网解:①设CF=x,DF=y,BC=h,则由已知菱形BFDE,BF=DF=y
由已知得:
(x+y)h
yh
=
2+
3
2

得:
x
y
=
3
2
,即cos∠BFC=
3
2

∴∠BFC=30°,
由已知
∴∠EDF=30°
∴tan∠EDF=
3
3

所以①是真命题.

②已知菱形BFDE,∴DF=DE
S△DEF=
1
2
DF•AD=
1
4
BD•EF,
又DE2=BD•EF(已知),
∴S△DEF=
1
4
DE2=
1
4
DF2
∴DF•AD=
1
2
DF2
∴DF=2AD,
∴②是真命题.
故选:A.
点评:此题考查的知识点是解直角三角形、矩形的性质及菱形的性质,解题的关键是①先求出∠EDF的正弦确定其度数,再求出其正切.②用面积法确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),若DE2=BD•EF,则DF与AD之间的数量关系是
DF=2AD
DF=2AD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,有一个菱形BFDE(点E、F分别在线段AB、CD上),记它们的面积分别为. 现给出下列命题:

①若,则;②若,则DF=2AD.

那么,下面判断正确的是(   )

A.①是真命题,②是真命题             B.①是真命题,②是假命题

C.①是假命题,②是真命题          D.①假真命题,②假真命题

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,有一个菱形BFDE(点E、F分别在线段AB、CD上),记它们的面积分别为. 现给出下列命题:

①若,则;②若,则DF=2AD.
那么,下面判断正确的是(   )
A.①是真命题,②是真命题        B.①是真命题,②是假命题
C.①是假命题,②是真命题             D.①假真命题,②假真命题

查看答案和解析>>

科目:初中数学 来源:2011-2012学年四川省夹江县初三毕业考试数学试卷(解析版) 题型:选择题

如图,在矩形ABCD中,有一个菱形BFDE(点E、F分别在线段AB、CD上),记它们的面积分别为. 现给出下列命题:

①若,则;②若,则DF=2AD.

那么,下面判断正确的是(    )

A.①是真命题,②是真命题              B.①是真命题,②是假命题

C.①是假命题,②是真命题           D.①假真命题,②假真命题

 

查看答案和解析>>

同步练习册答案