精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线l:,过点M(1,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1x轴的垂线交直线lN1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M5的坐标为_____

【答案】(1024,0).

【解析】

本题需先求出OM1OM2的长,再根据题意得出OMn=4n,求出OM4的长等于44,即可求出M5的坐标.

解:∵直线l的解析式是y=x,

∴∠NOM=60°,ONM=30°.

∵点M的坐标是(1,0),NMy轴,点N在直线y=x上,

NM=

ON=2OM=2.

又∵NM1l,即∠ONM1=90°

OM1=2ON=41OM=4.

同理,OM2=4OM1=42OM,

OM3=4OM2=4×42OM=43OM,

OM5=45OM=1024.

∴点M5的坐标是(1024,0).

故答案是:(1024,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AEBF交于点G.下列结论错误的是(  )

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为;抛物线的解析式为
(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?

(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,BP、CP分别是∠ABC和∠ACB的角平分线,∠BPC=134°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BDACD.若∠A:ABC:ACB=3:4:5,E为线段BD上任一点.

(1)试求∠ABD的度数;

(2)求证:∠BEC>∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题

土特产种类

每辆汽车运载量(吨)

8

6

5

每吨土特产获利(百元)

12

16

10

(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式

(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案

(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“双十二”期间,AB两个超市开展促销活动,活动方式如下:

A超市:购物金额打9折后,若超过2000元再优惠300元;

B超市:购物金额打8

某学校计划购买某品牌的篮球做奖品,该品牌的篮球在AB两个超市的标价相同根据商场的活动方式:

(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5请求出这种篮球的标价

(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx﹣2(k>0)与双曲线 在第一象限内的交点R,与x轴、y轴的交点分别为P、Q.过R作RM⊥x轴,M为垂足,若△OPQ与△PRM的面积相等,则k的值等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ADE,且∠CAD10°∠B∠D25°∠EAB120°,试求∠DFB∠DGB的度数.

查看答案和解析>>

同步练习册答案