如图,二次函数的图像交轴于,交轴于,过画直线。
(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形,若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在轴右侧的点在二次函数图像上,以为圆心的圆与直线相切,切点为。且△CHM∽△AOC(点与点对应),求点的坐标。
(1)(2)(2,2),( ,),(,);(,)。
(3)或
【解析】
试题分析:解:(1)∵二次函数的图像交轴于,∴设该二次函数的解析式为:,又二次函数的图像交轴于,将代入,得,解得,,∴抛物线的解析式为,即;
(2)若OC为平行四边形的边,设P(,),Q(,),则PQ=,P、Q、O、C为顶点的四边形为平行四边形,则,∴(舍去),,;∴(2,2),( ,),(,);若OC为平行四边形的对角线,则(,)。
(3)∵△CHM∽△AOC,点与点对应,∴
情形1:如上图,当在点下方时,∵
∴轴,∴,点在二次函数图像上,
∴ ,解得(舍去)或,∴;
情形2:如图,当在点上方时,∵,设交轴于点P,设,则,在中,
由勾股定理,得,解得,,即,
为直线与抛物线的另一交点,设直线的解析式为,把的坐标代入,得,解得,,∴,由,解得,(舍去)或
此时,∴,∴点的坐标为或
考点:二次函数在几何中的应用
点评:该题需要考虑的情况有多种,这是难点,需要学生经常练习,积累经验,结合图形找出突破口。
科目:初中数学 来源:2012年初中毕业升学考试(浙江宁波卷)数学(带解析) 题型:解答题
如图,二次函数的图像交轴于,交轴于,过画直线。
(1)求二次函数的解析式;
(2)点在轴正半轴上,且,求的长;
(3)点在二次函数图像上,以为圆心的圆与直线相切,切点为。
① 点在轴右侧,且(点与点对应),求点的坐标;
② 若的半径为,求点的坐标。
查看答案和解析>>
科目:初中数学 来源:2013届江苏省江阴暨阳九年级上学期期末考试数学试卷(带解析) 题型:解答题
如图,二次函数的图像交轴于,交轴于,过画直线。
(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形,若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在轴右侧的点在二次函数图像上,以为圆心的圆与直线相切,切点为。且△CHM∽△AOC(点与点对应),求点的坐标。
查看答案和解析>>
科目:初中数学 来源:2013年四川省乐山市沙湾区九年级调研考试数学试卷(带解析) 题型:解答题
如图,二次函数的图像过点,与轴交于点.
(1)证明:(其中是原点);
(2)在抛物线的对称轴上求一点,使的值最小;
(3)若是线段上的一个动点(不与、重合),过作轴的平行线,分别交此二次函数图像及轴于、两点 . 请问
是否存在这样的点,使. 若存在,
请求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江杭州市九年级上学期期中考试数学试卷(解析版) 题型:选择题
如图,二次函数的图像与轴正半轴相交,其顶点坐标为(),下列结论:①;②;③;④.
其中正确结论的个数是 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com