精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是(

A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC

【答案】B
【解析】解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A、∵在△ADF和△CBE中

∴△ADF≌△CBE(ASA),正确,故本选项错误;
B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C、∵在△ADF和△CBE中

∴△ADF≌△CBE(SAS),正确,故本选项错误;
D、∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中

∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选B.
求出AF=CE,再根据全等三角形的判定定理判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据给出的数轴及已知条件,解答下面的问题:

(1)已知点A,B,C表示的数分别为1,﹣ ,﹣3观察数轴,与点A的距离为3的点表示的数是 , B,C两点之间的距离为
(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M , N
(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P , Q(用含m,n的式子表示这两个数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设⊙O的半径为rP到圆心的距离为d不大于r,则点P( )

A. 在⊙OB. 在⊙OC. 不在⊙OD. 不在⊙O

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图,以ABCBC边上一点O为圆心的圆,经过AB两点,且与BC边交于点EDBE的下半圆弧的中点,连接ADBCFAC=FC

(1)求证:AC是⊙O的切线;

(2)已知圆的半径R=5,EF=3,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读
(1)阅读理解:

如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算a2a3 , 正确的结果是(
A.2a6
B.2a5
C.a6
D.a5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能判定直线a与b平行的是(

A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮在上午8时、930分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为(

A. 上午8 B. 上午930 C. 上午10 D. 上午12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x(x+4)=8x+12的一般形式是_______________.

查看答案和解析>>

同步练习册答案