精英家教网 > 初中数学 > 题目详情

【题目】将△ABC的∠C折起,翻折后角的顶点位置记作C′,当C′落在AC上时(如图1),易证:∠1=22.

C′点落在CACB之间(如图2)时,或当C′落在CBCA的同旁(如图3)时,∠123关系又如何?请写出你的猜想,并就其中一种情况给出证明.

1 2 3

【答案】见解析

【解析】利用轴对称的知识找出等解即可进行推理判断.

解:当C点落在CACB之间(如图2)时,∠1+3=22

C落在CBCA的同旁(如图3)时,∠13=22

对于图2证明如下:

连结CC,如图4所示,

∵⊿ECD是由⊿ECD翻折得到的

∴⊿ECD≌⊿ECD,由此得EC=ECDC=DCECD=ECD

∴∠ECC=ECCDCC=DCC

∵∠1=DCC+DCC3=EC’C+ECC

∴∠1+3=DCC+DCC’ + ECC+ECC’=2DC’C+2 ECC =2(DCC+ ECC)= 22

∴∠1+3=22

对于图3证明如下:

ACDC在⊿ABC内部所夹角为∠4,如图5所示,

则有∠1=C+44=3+2

又由翻折得:∠2=C

∴∠1=2+3+2=3+22

∴∠13=22.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD,∠1=2,∠3=4

1)求证:ADBE

2)若∠B=3=22,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.

(1)求一次函数和反比例函数的解析式;
(2)求△ABH面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填写理由:

已知:如图,ABC是直线,1=115°,D=65°.

求证:ABDE.

证明:∵ABC是一直线,(已知)

∴∠1+2=180°( )

∵∠1=115°(已知)

∴∠2=65°

又∵∠D=65°(已知)

∴∠2=D

( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点PAB上任一点,∠ABC=ABD,从下列各条件中补充一个条件,不一定能推出ΔAPCΔAPD.的是( )

A. BC=BD. B. ACB=ADB. C. CAB=DAB D. AC=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,拋物线y=﹣ x2 x与x轴交于O,A,点B在抛物线上且横坐标为2.

(1)如图1,△AOB的面积是多少?
(2)如图1,在线段AB上方的抛物线上有一点K,当△ABK的面积最大时,求点K的坐标及△ABK的面积;
(3)在(2)的条件下,点H 在y轴上运动,点I在x轴上运动.则当四边形BHIK周长最小时,求出H、I的坐标以及四边形BHIK周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知网格上最小的正方形的边长为1.

(1)分别写出A,B,C三点的坐标;

(2)作△ABC关于y轴的对称图形△A′B′C′(不写作法),想一想:关于y轴对称的两个点之间有什么关系?

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为EBED;SAPD+SAPB=1+.其中正确结论的序号是(  )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%, ①这种商品A的进价为多少元?
②现有另一种商品B进价为600元,每件商品B也可获利10%.对商品A和B共进货100件,要使这100件商品共获纯利6670元,则需对商品A、B分别进货多少件?

查看答案和解析>>

同步练习册答案