精英家教网 > 初中数学 > 题目详情
(2006•安顺)已知:在Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,⊙O与斜边AC交于点D,E为BC边的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,若四边形AOED是平行四边形,求∠CAB的大小.
【答案】分析:(1)D点已经在圆周上,要证DE为切线,只需证明∠ODE=90°,而这一结论可根据三角形全等来证明,即△OBE≌△ODE,依据为边角边.
(2)在(1)的基础上,加上三角形中位线定理,以求出∠CAB=45°.
解答:(1)证明:连接OD;
∵AO=BO,BE=CE,
∴OE∥AC.
∴∠BOE=∠A,∠EOD=∠ODA.
又∵OD=OA,
∴∠A=∠ODA,
∴∠EOD=∠EOB.
又∵OD=OB,OE=OE,
∴△DOE≌△BOE,
∴∠ODE=∠B=90°.
即DE是⊙O的切线.

(2)解:由(1)得,OE∥AC,且OE=AC;
∵四边形AOED为平行四边形,
∴OE=AD=CD,
∴四边形OECD为平行四边形,
∴∠C=∠DOE.
又∵∠A=∠DOE且∠B=90°,
∴∠A=∠C=45°.
点评:此题考查了切线的判定和平行四边形的判定及性质.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《反比例函数》(04)(解析版) 题型:填空题

(2006•安顺)已知反比例函数的图象经过点(1,2),则它的解析式为:   

查看答案和解析>>

科目:初中数学 来源:2006年贵州省安顺市中考数学试卷(课标卷)(解析版) 题型:填空题

(2006•安顺)已知反比例函数的图象经过点(1,2),则它的解析式为:   

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一元二次方程》(07)(解析版) 题型:解答题

(2006•安顺)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年贵州省安顺市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•安顺)九年级甲、乙两班学生参加电脑知识竞赛,得分均为正整数,将学生成绩进行整理后分成5组,创建频率分布直方图,如图所示,已知图中从左至右的第一、第三、第四、第五小组的频率分别为0.3;0.15;0.1;0.05,且第三小组的频数为6.
(1)求第二小组的频率,并补全频率分布直方图;
(2)求这两个班参赛的学生人数是多少?
(3)这两个班参赛学生成绩的中位数落在第几小组内?(不必说明理由).

查看答案和解析>>

同步练习册答案