精英家教网 > 初中数学 > 题目详情
11.如图,△ABC中,∠ACB=90°,AC=BC=3,点D在AC上,CD=1,连接BD,过点C作CH⊥BD于点H,O为AB中点,连接OH,则OH的长为$\frac{3\sqrt{5}}{5}$.

分析 在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到 $\frac{CH}{BC}$=$\frac{CD}{BD}$,求得CH,根据等腰直角三角形的性质得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.

解答 解:在BD上截取BE=CH,连接CO,OE,
∵∠ACB=90°,CH⊥BD,
∵AC=BC=3,CD=1,
∴BD=$\sqrt{10}$,
∴△CDH∽△BDC,
∴$\frac{CH}{BC}$=$\frac{CD}{BD}$,
∴CH=$\frac{3\sqrt{10}}{10}$,
∵△ACB是等腰直角三角形,点O是AB中点,
∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,
∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,
∵∠DCH=∠CBD,∴∠OCH=∠ABD,
在△CHO与△BEO中,
$\left\{\begin{array}{l}{CH=BE}\\{∠HCO=∠EBO}\\{OC=OB}\end{array}\right.$,
∴△CHO≌△BEO,
∴OE=OH,∠BOE=∠HOC,
∵OC⊥BO,
∴∠EOH=90°,
即△HOE是等腰直角三角形,
∵EH=BD-DH-CH=$\sqrt{10}$-$\frac{\sqrt{10}}{10}$-$\frac{3\sqrt{10}}{10}$=$\frac{3\sqrt{10}}{5}$,
∴OH=EH×$\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{5}}{5}$,
故答案为:$\frac{3\sqrt{5}}{5}$.

点评 本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.阅读下列材料,解决提出的问题:
数学活动课上,老师提出如下问题:如图1,点D为等边三角形ABC的边BC上一点,将线段AD绕点A顺时针旋转120°到AE,连接EC交AB于点F,判断EF与FC的数量关系.
小明从特殊位置开始进行探究:如图2,使点D与点B重合,这时发现点E、A、C在一条直线上,点F与点A重合,由此猜想EF与FC相等.
解决问题:小明发现的结论在图1所示的位置时成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在平面直角坐标系中,△ABC是格点三角形(三角形顶点在小方格顶点上),网格中小正方形的边长为1,请解答下列问题:
(1)将△ABC向下平移3个单位得到△A1B1C1,作出平移后的△A1B1C1
(2)将△A1B1C1经过适当方式进行图形变换后得到△A2B2C2,使得△A2B2C2与△ABC关于原点O成中心对称,请画出△A2B2C2,并说出你是如何将△A1B1C1进行图形变换后得到△A2B2C2的.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
(1)求证:∠A=2∠CBD;
(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知:如图,在△ABC中,∠ABC=∠ACB,BD⊥AC于D,点E在AB边上,CE交BD于点F,且∠BEF=∠BFE,EG⊥AC于点G.若GE=3,CD=4,则线段BE的长为7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知$f(x)=\frac{1}{x(x+1)}$,则$f(1)=\frac{1}{1×(1+1)}=\frac{1}{1×2},f(2)=\frac{1}{2×(2+1)}=\frac{1}{2×3}$,那么f(1)+f(2)+f(3)+…+f(2017)=$\frac{2017}{2018}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,四边形ABCD中,BA<BC,BD平分∠ABC,且DA=DC.求证:∠BAD+∠BCD=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,点P是∠AOB角平分线OC上任一点,若过点P分别作PM⊥OA,PN⊥OB,连接MN交OP于点Q,有如下结论:
(1)OM=PN,(2)PM=ON   (3)MQ=NQ  (4)OP⊥MN,
那么正确的结论有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在四边形ACDE中,ED=CA,ED∥CA,C为AB的中点,BE与CD相交于点F,求证:EF=BF.

查看答案和解析>>

同步练习册答案