精英家教网 > 初中数学 > 题目详情
(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为    米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)
【答案】分析:图中有两个直角三角形△ABD、△ACD,可根据两个已知角度,利用正切函数定义,分别求出BD和CD,求差即可.
解答:解:根据题意:在Rt△ABD中,有BD=AD•tan52°.
在Rt△ADC中,有DC=AD•tan35°.
则有BC=BD-CD=6(1.28-0.70)=3.5(米).
点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2009•仙桃)如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:2010年山东省德州市武城县九年级练兵考试数学试卷(一)(解析版) 题型:解答题

(2009•仙桃)如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省江汉油田中考数学试卷(解析版) 题型:解答题

(2009•仙桃)如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《图形的平移》(01)(解析版) 题型:选择题

(2009•仙桃)如图,把图中的⊙A经过平移得到⊙O(如左图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P’的坐标为( )

A.(m+2,n+1)
B.(m-2,n-1)
C.(m-2,n+1)
D.(m+2,n-1)

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2009•仙桃)如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度???为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

查看答案和解析>>

同步练习册答案