精英家教网 > 初中数学 > 题目详情
精英家教网如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若
1
CE
+
1
BF
=6,则△ABC的边长为(  )
A、
1
8
B、
1
4
C、
1
2
D、1
分析:过点A作直线PQ∥BC,延长BE交PQ于点P;延长CF,交PQ于点Q.证明△BCE∽△PAE,△CBF∽△QAF,
构造
1
CE
+
1
BF
与BC的关系求解.
解答:精英家教网解:过点A作直线PQ∥BC,延长BD交PQ于点P;延长CD,交PQ于点Q.
∵PQ∥BC,
∴△PQD∽△BCD,
∵点D在△ABC的中位线上,
∴△PQD与△BCD的高相等,
∴△PQD≌△BCD,
∴PQ=BC,
∵AE=AC-CE,AF=AB-BF,
在△BCE与△PAE中,∠PAE=∠ACB,∠APE=∠CBE,
∴△BCE∽△PAE,
AE
CE
=
AP
BC
…①
同理:△CBF∽△QAF,
AF
BF
=
AQ
BC
…②
①+②,得:
AC-CE
CE
+
AB-BF
BF
=
AP+AQ
BC

AC
CE
+
AB
BF
=3,
又∵
1
CE
+
1
BF
=6,AC=AB,
∴△ABC的边长=
1
2

故选C.
点评:本题综合考查了三角形中位线定理及三角形的相似的知识,解题的关键是作平行线构造相似,从而得到已知与所求线段的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案