【题目】如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.
【答案】(3,﹣10)
【解析】
首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.
解:∵A(﹣3,4),B(3,4),
∴AB=3+3=6,
∵四边形ABCD为正方形,
∴AD=AB=6,
∴D(﹣3,10),
∵70=4×17+2,
∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,
∴此时点D的坐标为(3,﹣10).
故答案为:(3,﹣10).
科目:初中数学 来源: 题型:
【题目】已知直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,且.
(1)求抛物线的解析式;
(2)点在上,点在的延长线上,且,连接交于点,点为第一象限内的一点,当是以为斜边的等腰直角三角形时,连接,设的长度为,的面积为,请用含的式子表示,并写出自变量的取值范围;
(3)在(2)的条件下,连接、,将沿翻折到的位置(与对应),若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AF为⊙O的直径,点B在AF的延长线上,BE切⊙O于点E,过点A作AC⊥BE,交BE的延长线交于点C,交⊙O交于点D,连接AE,EF,FD,DE.
(1)求证:EF=ED.
(2)求证:DFAF=2AEEF.
(3)若AE=4,DE=2,求sin∠DFA的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点O是AC边上的一个动点,过点O作直线,设MN交的角平分线于点E,交的外角平分线于点F.
求证:;
当点O运动到何处时,四边形AECF是矩形?请说明理由;
在的条件下,给再添加一个条件,使四边形AECF是正方形,那么添加的条件是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+ax+a﹣2=0.
(1)求证:不论a取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为1,求a的值及该方程的另一根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.
(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.当t=____________ 秒时△APQ与△ABC相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ABC=90°,AB=BC=2,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D与点A对应,点E与点B对应),DM交AC于点P.
(1)若点N是线段MB的中点,如图1.
①依题意补全图1;
②求DP的长;
(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;
(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com