【题目】凤城商场经销一种高档水果,售价为每千克50元
(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?
【答案】(1)平均下降的百分率为20%;(2)每千克应涨价7.5元才能使每天盈利最大.
【解析】
(1)设每次降价的百分率为x,(1-x)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;
(2)根据题意列出关于上涨价格m的二次函数解析式,然后将其配方成顶点式,最后根据二次函数的性质可得其最值情况.
(1)设每次下降的百分率为x,
根据题意得:50(1﹣x)2=32,
解得:x1=0.2,x2=1.8(不合题意舍去),
答:平均下降的百分率为20%.
(2)设每千克应涨价m元,每天的利润为W元,
W=(50﹣40+m)(500﹣20m)=﹣20m2+300m+5000,
则对称轴为m=﹣=7.5,
∵a=﹣20<0,
∴当m=7.5时函数有最大值,
答:每千克应涨价7.5元才能使每天盈利最大.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,M的南偏东60°方向上有一点A,以A为圆心,500m为半径的圆形区域为居民区,取MN上另一点B,测得BA方向为南偏东75°,已知MB=400m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=____.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若AF=6,EF=2,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】凤城商场经销一种高档水果,售价为每千克50元
(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,且经过点B,求这条抛物线对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.
(1)求证:IE=BE;
(2)若IE=4,AE=8,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com