精英家教网 > 初中数学 > 题目详情
(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

【答案】分析:(1)由A和B都在反比例函数图象上,故把两点坐标代入到反比例解析式中,列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A的坐标及反比例函数解析式,把确定出的A坐标及B的坐标代入到一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;
(2)令一次函数解析式中x为0,求出此时y的值,即可得到一次函数与y轴交点C的坐标,得到OC的长,三角形AOB的面积分为三角形AOC及三角形BOC面积之和,且这两三角形底都为OC,高分别为A和B的横坐标的绝对值,利用三角形的面积公式即可求出三角形ABC的面积;
(3)根据图象和交点坐标即可得出结果.
解答:解:(1)∵m=-8,
∴n=2,
则y=kx+b过A(-4,2),B(n,-4)两点,

解得k=-1,b=-2.
故B(2,-4),一次函数的解析式为y=-x-2;

(2)由(1)得一次函数y=-x-2,
令x=0,解得y=-2,
∴一次函数与y轴交点为C(0,-2),
∴OC=2,
∴S△AOB=S△AOC+S△BOC
=OC•|y点A横坐标|+OC•|y点B横坐标|
=×2×4+×2×2=6.
S△AOB=6;

(3)一次函数的值小于反比例函数值的x的取值范围:-4<x<0或x>2.
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有利用待定系数法求函数解析式,两函数交点坐标的意义,一次函数与坐标轴交点的求法,以及三角形的面积公式,利用了数形结合的思想.第一问利用的方法为待定系数法,即根据题意把两交点坐标分别代入两函数解析式中,得到方程组,求出方程组的解确定出函数解析式中的字母常数,从而确定出函数解析式,第二问要求学生借助图形,找出点坐标与三角形边长及边上高的关系,进而把所求三角形分为两三角形来求面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数y=
mx
图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年广东省珠海市中考数学二模试卷(解析版) 题型:解答题

(2007•资阳)如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x-3-212
y-4
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省襄樊市保康县城关镇中中考数学二模试卷(解析版) 题型:解答题

(2007•资阳)如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x-3-212
y-4
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年河北省石家庄市第42中学中考数学二模试卷(解析版) 题型:解答题

(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

同步练习册答案