精英家教网 > 初中数学 > 题目详情
已知x1,x2是一元二次方程x2-x+2m-2=0的两个实根.
(1)求m的取值范围;
(2)若m满足2x1+x2=m+1,求m的值.
分析:(1)根据一元二次方程根的判别式,当△≥0时,方程有两个实数根,所以只需用△≥0求出m即可;
(2)利用一元二次方程根与系数的关系,首先将|x1-x2|=2,变形得出两根之和与两根之差的形式,结合x1+x2=-
b
a
,x1x2=
c
a
,求出即可.
解答:解:(1)△=1-4(2m-2)=-8m+9≥0,
∴m≤
9
8

∴m的取值范围为m≤
9
8


(2)∵x1+x2=1,
又2x1+x2=m+1,x1x2=2m-2,
∴x 1=m,x 2=1-m,
∴x1x2=2(m-1)=2m-2,
∴-m 2+m=2m-2,
∴m 2+m-2=0,
∴m=-2,或  m=1;
∵m=-2和 m=1均在m≤
9
8
取值范围内;
∴m的取值为m=-2或  m=1.
点评:此题主要考查了一元二次方程根与系数的关系以及根的判别式,求出(2)中两根用m表示是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则
x1
x2
+
x2
x1
的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是一元二次方程ax2+bx+c=0的两根,且判别式△=b2-4ac≥0,则x1-x2的值为(  )
A、
a
B、
2a
C、±
a
D、±
2a

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是一元二次方程(k+1)x2+2kx+k-3=0的两个不相等的实数根.
(1)求实数k的取值范围.
(2)在(1)条件下,当k为最小整数时一元二次方程x2-x+k=0与x2+mx-m2=0只有一个相同的根,求m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

37、已知x1、x2是一元二次方程x2-3x+1=0的两个根,求(x1-1)(x2-1)的值.

查看答案和解析>>

同步练习册答案