精英家教网 > 初中数学 > 题目详情

【题目】我们约定:如果身高在选定标准的±2%范围之内都称为普通身高.为了了解某校九年级男生中具有普遍身高的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:

1)计算这组数据的三个统计量:平均数、中位数、众数;

2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有普遍身高是哪几位男生?并说明理由.

【答案】1)平均数为166.6cm,中位数165cm,众数:164cm2)见解析

【解析】

1)平均数为:

=166.6cm);

10名同学身高从小到大排列如下:

159161163164164166169171173174

中位数:=165cm);

众数:164cm);

2)选平均数作为标准:

身高x满足166.4×1﹣2%≤x≤166.4×1+2%

163.072≤x≤169.728时为普遍身高,

此时⑦⑧⑨⑩男生的身高具有普遍身高

选中位数作为标准:

身高x满足165×1﹣2%≤x≤165×1+2%

161.7≤x≤168.3时为普遍身高,此时①⑦⑧⑩男生的身高具有普遍身高

选众数作为标准:

身高x满足164×1﹣2%≤x≤164×1+2%

160.72≤x≤167.28时为普遍身高,此时①⑤⑦⑧⑩男生的身高具有普遍身高

1)根据平均数、中位数、众数的定义进行计算即可得解;

2)根据(1)中求出的数据,求出普遍身高的取值范围,然后确定学生序号即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC,∠BAC=90°,ABACD为直线BC上一动点(点D不与BC重合),AD为直角边在AD右侧作等腰直角三角形ADE且∠DAE=90°,连接CE

(1)如图①,当点D在线段BC上时

BCCE的位置关系为   

BCCDCE之间的数量关系为   

(2)如图②,当点D在线段CB的延长线上时结论①,②是否仍然成立?若不成立请你写出正确结论并给予证明

(3)如图③,当点D在线段BC的延长线上时BCCDCE之间的数量关系为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副直角三角板叠放在一起可以拼出多种图形,如图①④,每幅图中所求角度正确的个数有(

①∠BFD=15°;②∠ACD+ECB=150°;③∠BGE=45° ;④∠ACE=30°

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司33名职工的月工资(单位:元)如下:

(1)求该公司职工月工资的平均数、中位数、众数;(精确到个位)

(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又各是多少?(精确到个位)

(3)你认为哪个统计量更能反映这个公司职工的工资水平,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)

(2)请选择(1)中的一种情形,写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 点上正方 处发出一球,羽毛球飞行的高度 与水平距离 之间满足函数表达式 .已知点 与球网的水平距离为 ,球网的高度为
(1)当 时,①求 的值;②通过计算判断此球能否过网;
(2)若甲发球过网后,羽毛球飞行到 处时,乙扣球成功。已知点 离点 的水平距离为 ,离地面的高度为 的,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB上,△DAC和△DBE都是等边三角形.
(1)求证:△DAB≌△DCE;
(2)求证:DA∥EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD的对角线ACBD交于点O,给出下列四个论断:

OA=OC,AB=CD,③∠BAD=DCB,ADBC.

请你从中选择两个论断作为条件,以四边形ABCD为平行四边形作为结论,完成下列各题:

(1)构造一个真命题,画图并给出证明;

(2)构造一个假命题,举反例加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,BAC=90°AC=2AB,点DAC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与AD重合,连接BEEC

试猜想线段BEEC的数量及位置关系,并证明你的猜想.

查看答案和解析>>

同步练习册答案