【题目】我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普遍身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:
(1)计算这组数据的三个统计量:平均数、中位数、众数;
(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普遍身高”是哪几位男生?并说明理由.
【答案】(1)平均数为166.6cm,中位数165cm,众数:164cm(2)见解析
【解析】
(1)平均数为:
=166.6(cm);
10名同学身高从小到大排列如下:
159、161、163、164、164、166、169、171、173、174,
中位数:=165(cm);
众数:164(cm);
(2)选平均数作为标准:
身高x满足166.4×(1﹣2%)≤x≤166.4×(1+2%)
即163.072≤x≤169.728时为普遍身高,
此时⑦⑧⑨⑩男生的身高具有“普遍身高”.
选中位数作为标准:
身高x满足165×(1﹣2%)≤x≤165×(1+2%)
即161.7≤x≤168.3时为普遍身高,此时①⑦⑧⑩男生的身高具有“普遍身高”.
选众数作为标准:
身高x满足164×(1﹣2%)≤x≤164×(1+2%)
即160.72≤x≤167.28时为普遍身高,此时①⑤⑦⑧⑩男生的身高具有“普遍身高”.
(1)根据平均数、中位数、众数的定义进行计算即可得解;
(2)根据(1)中求出的数据,求出普遍身高的取值范围,然后确定学生序号即可.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.
(1)如图①,当点D在线段BC上时:
①BC与CE的位置关系为 ;
②BC、CD、CE之间的数量关系为 .
(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.
(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副直角三角板叠放在一起可以拼出多种图形,如图①—④,每幅图中所求角度正确的个数有( )
①∠BFD=15°;②∠ACD+∠ECB=150°;③∠BGE=45° ;④∠ACE=30°
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司33名职工的月工资(单位:元)如下:
(1)求该公司职工月工资的平均数、中位数、众数;(精确到个位)
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又各是多少?(精确到个位)
(3)你认为哪个统计量更能反映这个公司职工的工资水平,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,写出证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 点上正方 的 处发出一球,羽毛球飞行的高度 与水平距离 之间满足函数表达式 .已知点 与球网的水平距离为 ,球网的高度为 .
(1)当 时,①求 的值;②通过计算判断此球能否过网;
(2)若甲发球过网后,羽毛球飞行到 处时,乙扣球成功。已知点 离点 的水平距离为 ,离地面的高度为 的,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.
试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com