精英家教网 > 初中数学 > 题目详情
如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角______等于60度.(填“都”、“不都”或“都不”)
∵DEBC,△ABC是等边三角形
∴∠ADE=∠ABE=60°,∠AED=∠ACB=60°
∴△ADE是等边三角形,即△ADE的三个内角都等于60°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知如图,B是AC上一点,△ABD和△DCE都是等边三角形.
(1)求证:AC=BE;
(2)若BE⊥DC,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知AB=AC,∠APC=60°.
(1)求证:△ABC是等边三角形;
(2)若BC=4
3
,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等边△ABC中,D、E分别在AB、AC上,且AD=CE,BE、CD交于点P,若∠ABE:∠CBE=1:2,则∠BDP=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是(  )
A.Ll=L2B.L1>L2C.L2>L1D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=
mh
m-n
.图(4)与图(6)中的等式有何关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点B坐标为(-4,0),点C与点B关于原点O对称,点A为y轴上一动点,其坐标为(0,k),BE,CD分别为△ABC中AC,AB边上的高,垂足分别为E,D.
(1)当k=-3时,求AB的长;
(2)试说明△DOE是等腰三角形;
(3)k取何值时,△DOE是等边三角形?(直接写出k的值即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC为等边三角形,BC⊥CD,AC=CD,则∠CED=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个全等的等边三角形△ABC,△DEF的一边重叠地放在直线l上,AC,DE交于点P,
(1)判断△PCE的形状,并说明理由:
(2)写出图中所有的与线段PA相等的线段;
(3)证明:AF=BD.

查看答案和解析>>

同步练习册答案