【题目】定义:我们把对角线互相垂直的四边形叫做和美四边形,对角线交点称为和美四边形的中心.
(1)写出一种你学过的和美四边形_________;
(2)如图1,点O是和美四边形ABCD的中心,E,F,G、H分别是边AB,BC,CD,DA的中点,连接OE,OF,OG,OH,记四边形AEOH,BEOF,CGOF,DHOG的面积为,用等式表示的数量关系(无需说明理由).
(3)如图2,四边形ABCD是和美四边形,若AB=3,BC=2,CD=4,求AD的长.
【答案】(1)正方形(答案不唯一,也可以是菱形.);(2)S1+S3= S2+S4;(3).
【解析】
(1)根据正方形的对角线互相垂直解答(答案不唯一);
(2)根据三角形的中线把三角形分为面积相等的两部分解答;
(3)根据和美四边形的定义、勾股定理计算即可.
解:(1)正方形是学过的和美四边形,
故答案为:正方形;(答案不唯一,也可以是菱形.)
(2)的数量关系是S1+S3= S2+S4;理由如下:
如图1,连接AC、BD,
由和美四边形的定义可知,AC⊥BD,
则∠AOB=∠BOC=∠COD=∠DOA=90°,
又E、F、G、H分别是边AB、BC、CD、DA的中点,
∴△AOE的面积=△BOE的面积,△BOF的面积=△COF的面积,△COG的面积=△DOG的面积,△DOH的面积=△AOH的面积,
∵S1+S3=△AOE的面积+△COF的面积+△COG的面积+△AOH的面积,
S2+S4=△BOE的面积+△BOF的面积+△DOG的面积+△DOH的面积,
∴S1+S3= S2+S4;
(3)如图2,连接AC、BD交于点O,则AC⊥BD,
∵在Rt△AOB中,AO2=AB2-BO2,
Rt△DOC中,DO2=DC2-CO2,
AB=3,BC=2,CD=4,
∴AD2=AO2+DO2
=AB2-BO2+DC2-CO2
=AB2+DC2-BC2
=32+42-22
=21,
∴AD= .
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,CD=4,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD中,∠B=60°,点E,F分别是BC,CD上的两个动点,且始终保持∠AEF=60°.
(1)试判断△AEF的形状并说明理由;
(2)若菱形的边长为2,求△ECF周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.
(1)当t为何值时,∠AMN=∠ANM?
(2)当t为何值时,△AMN的面积最大?并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为,直线l的解析式为y=x.
(1)求二次函数的解析式;
(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;
(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,二次函数的解析式为.
(1)它与轴的交点的坐标为________,顶点坐标为________;
(2)在给定的坐标系中画出这个二次函数的图象,并求出抛物线与坐标轴的交点所组成的三角形的面积;
(3)根据图象直接写出抛物线在范围内,函数值的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行
河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,
沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据: ≈1.41, ≈1.73,结果保留整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com