精英家教网 > 初中数学 > 题目详情
18、如图,有一段斜坡BC长为10米,坡角∠CBD=10°,为使残疾人的轮椅车通行更省力,现准备把坡角降为5°.
(1)求斜坡新起点A到原起点B的距离;
(2)求坡高CD(结果保留3个有效数字).
参考数据:sin10°=0.1736,cos10°=0.9848,tan10°=0.1763
分析:(1)由于∠A=5°,∠B=10°,则AB=BC,斜坡新起点A到原起点B的距离AB即可求出.
(2)坡高CD的长可利用正弦值求出.
解答:(1)∵△ABC外角∠CBD=10°,∠A=5°,
∴∠ACB=5°,∴AB=BC=10米.
(2)在△BCD中,CD=BC•sin10°=10×0.1736≈1.74(米).
点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°.
(1)求坡高CD;
(2)求斜坡新起点A到原起点B的距离(精确到0.1米).
参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
精英家教网
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湛江模拟)如图,有一段斜坡BC长为30米,坡角∠CBD=30°,为方便车辆通行,
现准备把坡角降为15°.
(1)求坡高CD;
(2)求斜坡新起点A到点D的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一段斜坡BC长为10米,坡角∠CBD=10°,为使残疾人的轮椅车通行更省力,现准备把坡角降为5°.
(1)求斜坡新起点A到原起点B的距离;
(2)求坡高CD(结果保留3个有效数字).
(参考数据:sin10°=0.1736,cos10°=0.9848,tan10°=0.1763.)

查看答案和解析>>

同步练习册答案