【题目】如图,EF∥AD,∠1=∠2,∠BAC=72 o,求∠AGD的度数.
解:因为EF∥AD
所以∠2= ( )
又因为∠1=∠2
所以∠1=∠3
所以AB∥ ( )
所以∠BAC+ =180 o( )
因为∠BAC=72 o
所以∠AGD= ( )
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|
当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|
当A、B两点都不在原点时,
(1)如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
(3)如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|
综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|
请用上面的知识解答下面的问题:
(1)数轴上表示﹣2和﹣4的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 .
(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 .
(3)当|x+1|+|x﹣2|=5时的整数x的值 .
(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有公共点,则r的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某演唱会购买门票的方式有两种.
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元;
方式二:如图所示.
设购买门票x张,总费用为y万元,方式一中:总费用=广告赞助费+门票费.
(1)求方式一中y与x的函数关系式.
(2)若甲、乙两个单位分别采用方式一、方式二购买本场演唱会门票共400张,且乙单位购买超过100张,两单位共花费27.2万元,求甲、乙两单位各购买门票多少张?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.
(1)若点E为完美点,且横坐标为2,则点E的纵坐标为 ;若点F为完美点,且横坐标为3,则点F的纵坐标为 ;
(2)完美点P在直线 (填直线解析式)上;
(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.
(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,,照此规律,用288根火柴搭成的图形是( ).
A. 第80个图形B. 第82个图形
C. 第72个图形D. 第95个图形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com