精英家教网 > 初中数学 > 题目详情

【题目】一只不透明的袋子中装有个大小、质地都相同的乒乓球,球面上分别标有数字,搅匀后先从中摸出一个球(不放回),再从余下的个球中摸出个球.

(1)用树状图列出所有可能出现的结果;

(2)次摸出的乒乓球球面上数字的积为偶数的概率.

【答案】1)画图见解析; (2

【解析】

试题(1)依据题意先用列表法或画树状图法分析所有可能,即可得出答案;

2)利用所有结果与所有符合要求的总数,然后根据概率公式求出该事件的概率.

试题解析:(1)根据题意画树形图如右图:

由图可知共有12种可能结果,分别为:

(1-2)(13)(1-4)(-21)(-23)(-2-4)(31)(3-2)(3-4)(-41)(-4-2)(-43)

(2)(1)中的12种可能结果中,两个数字之积为偶数的只有10种,P(积为偶数)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,边上的中线,过点于点,过点平行线,交的延长线于点,在延长线上截得,连结.若,则四边形的面积等于________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC△ADC都是等边三角形EF同时分别从点BA出发以相同的速度各自沿BAAD的方向运动到点AD停止连结ECFC.

(1)在点EF运动的过程中∠ECF的大小是否随之变化?请说明理由

(2)在点EF运动的过程中AECF为顶点的四边形的面积变化了吗?请说明理由

(3)连结EF在图中找出所有和∠ACE相等的角并说明理由

(4)若点EF在射线BA射线AD上继续运动下去(1)中的结论还成立吗?直接写出结论不必说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BD平分∠ABF,且交AE于点D.

(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);

(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备

后,乙组的工作效率是原来的2倍.两组各自加工零件的数量()与时间()的函数图

象如图所示.

1)求甲组加工零件的数量y与时间之间的函数关系式.(2分)

2)求乙组加工零件总量的值.(3分)

3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,角所对的直角边等于斜边的一半。小明同学对以上结论作了进一步探究.如图1,在中,,则:.

探究结论:(1)如图1边上的中线,易得结论:________三角形.

2)如图2,在中,边上的中线,点是边上任意一点,连接,在边上方作等边,连接.试探究线段之间的数量关系,写出你的猜想加以证明.

拓展应用:如图3,在平面直角坐标系中,点的坐标为,点轴正半轴上的一动点,以为边作等边,当点在第一象内,且时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线轴于点,交轴于点.

1)如图①,若的坐标为,且于点于点,试求点的坐标;

2)如图②,在(I)的条件下,连接,求的度数;

3)如图③,若点的中点,点轴正半轴上一动点,连接,过轴于点,当点在轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市文化宫学习十九大有关优先发展教育的精神,举办了为某贫困山区小学捐赠书包活动首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.

(1)求文化官第一批购进书包的单价是多少?

(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】信息1:我们已经学完了解分式方程,它的一般步骤为:确定最简公分母、化为整式方程、求出整式方程的解、进行检验(第一,代入最简公分母验证是否为零,第二代入分式方程的左右两边检验是否相等)、确定分式方程的解.其中代入最简公分母验证这一步也就是在验证所有分式在取此值时是否有意义;

信息2:遇到这种特征的题目,可以两边同时平方得到

信息3:遇到这种特征的题目,可以将左边变形,得到,进而可以得到.

结合上述信息解决下面的问题:

问题1:如果.可得:

问题2:解关于b的方程:.

查看答案和解析>>

同步练习册答案