等边三角形是大家熟悉的特殊三角形,除了以前我们所知道的它的一些性质外,它还有很多其它的性质,我们来研究下面的问题:
如图1,点P是等边△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易证:BE+CF+AD=EC+AF+BD
问题提出:如图2,若点P是等边△ABC内任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?
为了解决这个问题,现给予证明过程:
证明:连接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB
2=PE
2+BE
2,PC
2=PE
2+CE
2,∴PB
2-PC
2=BE
2-CE
2同理可证:PC
2-PA
2=CF
2-AF
2,PA
2-PB
2=AD
2-BD
2.
将上述三式相加得:BE
2-CE
2+CF
2-AF
2+AD
2-BD
2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等边三角形,设边长为a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
问题拓展:如图3,若点P是等边△ABC的边上任意一点,PD⊥AB于D,PF⊥AC于F,上述结论还成立吗?若成立,请直接写出结论,不用证明;若不成立,请说明理由.
问题解决:
如图4,若点P是等边△ABC外任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.