精英家教网 > 初中数学 > 题目详情
(2013•莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?
(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)
分析:作AD⊥BC的延长线于点D,先解Rt△ADB,求出AD,BD,再解Rt△ADC,求出AC,CD,则BC=BD-CD.然后分别求出A岛、B岛上维修船需要的时间,则派遣用时较少的岛上的维修船.
解答:解:作AD⊥BC的延长线于点D.
在Rt△ADB中,AD=AB•cos∠BAD=72×cos66°=72×0.4=28.8(海里),
BD=AB•sin∠BAD=72×sin66°=72×0.9=64.8(海里).
在Rt△ADC中,AC=
AD
cos∠DAC
=
28.8
cos37°
=
28.8
0.8
=36
(海里),
CD=AC•sin∠CAD=36×sin37°=36×0.6=21.6(海里).
BC=BD-CD=64.8-21.6=43.2(海里).
A岛上维修船需要时间tA=
AC
20
=
36
20
=1.8
(小时).
B岛上维修船需要时间tB=
BC
28.8
=
43.2
28.8
=1.5
(小时).
∵tA>tB
∴调度中心应该派遣B岛上的维修船.
点评:本题考查了解直角三角形的应用-方向角问题,难度适中,通过作辅助线,构造直角三角形,进而解直角三角形求出BD与CD的值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莱芜)如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莱芜)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.
(1)证明DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.

查看答案和解析>>

同步练习册答案