【题目】在我市开展“阳光”活动中,为解中学生活动开展情况,随机抽查全市八年级部分同学1分钟,将抽查结果进行,并绘制两个不完整图.请根据图中提供信息,解答问题:
(1)本次共抽查多少名学生?
(2)请补全直方图空缺部分,直接写扇形图中范围135≤x<155所在扇形圆心角度数.
(3)若本次抽查中,在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生成绩为优秀?
(4)请你根据以上信息,对我市开展学生活动谈谈自己看法或建议
【答案】
(1)
解:抽查的总人数:(8+16)÷12%=200(人)
(2)
解:范围是115≤x<145的人数是:200-8-16-71-60-16=29(人),则跳绳次数范围135≤x≤155所在扇形的圆心角度数是:360× =81°
(3)
优秀的比例是: ×100%=52.5%,则估计全市8000名八年级学生中有多少名学生的成绩为优秀人数是:8000×52.5%=4200(人);
(4)
全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.答案不唯一
【解析】(1)利用95≤x<115的人数是8+16=24人,所占的比例是12%即可求解;(2)求得范围是115≤x<145的人数,扇形的圆心角度数是360度乘以对应的比例即可求解;(3)首先求得所占的比例,然后乘以总人数8000即可求解;(4)根据实际情况,提出自己的见解即可,答案不唯一.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线相交于点O,点O也是正方形A′B′C′O的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O绕顶点O转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,□ABCD中,对角线AC,BD相交于点O,过点O作直线交AD于点E,交BC于点F,若□ABCD的面积为30cm2,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知:如图,E、F分别是ABCD的AD、BC边上的点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABOD的顶点A是函数y=-x-(k+1)的图象与函数y=在第二象限的图象的交点,B,D两点在坐标轴上,且长方形ABOD的面积为3.
(1)求两函数的表达式;
(2)求两函数图象的交点A,C的坐标;
(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com