精英家教网 > 初中数学 > 题目详情

x3x=-6中,________是方程x3(x2)6的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.

原问题:如图1,已知△ABC,∠ACB=90° , ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:

1.写出原问题中DF与EF的数量关系

2.如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;

3.如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中

得到的结论是否发生变化?请写出你的猜想并加以证明

 

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AMMN

    

(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.

证明:在AB上截取EAMC,连结EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABCEAMC,∴BAEABCMC,即BEBM

∴△BEM为等边三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1M1N1.是否还成立?(直接写出答案,不需要证明)

(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDnXn”,请你猜想:当∠AnMnNn    °时,结论AnMnMnNn仍然成立?(直接写出答案,不需要证明)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AMMN
    
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EAMC,连结EM,得△AEM
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BABCEAMC,∴BAEABCMC,即BEBM
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵________________________________
∴△AEM≌△MCN (ASA).∴AMMN
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1M1N1.是否还成立?(直接写出答案,不需要证明)
(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDnXn”,请你猜想:当∠AnMnNn   °时,结论AnMnMnNn仍然成立?(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(山东泰安卷)数学解析版 题型:解答题

数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AMMN
    
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EAMC,连结EM,得△AEM
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BABCEAMC,∴BAEABCMC,即BEBM
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵________________________________
∴△AEM≌△MCN (ASA).∴AMMN
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1M1N1.是否还成立?(直接写出答案,不需要证明)
(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDnXn”,请你猜想:当∠AnMnNn   °时,结论AnMnMnNn仍然成立?(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.

【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④错误.

【解答】在菱形ABCD中,∵AB=BD,

∴AB=BD=AD,

∴△ABD是等边三角形,

∴根据菱形的性质可得∠BDF=∠C=60°,

∵BE=CF,

∴BC-BE=CD-CF,

即CE=DF,

在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,

∴△BDF≌△DCE(SAS),故①小题正确;

∴∠DBF=∠EDC,

∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,

∴∠BMD=180°-∠DMF=180°-60°=120°,故②小题正确;

∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,

∴∠DEB=∠ABM,

又∵AD∥BC,

∴∠ADH=∠DEB,

∴∠ADH=∠ABM,

在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,

∴△ABM≌△ADH(SAS),

∴AH=AM,∠BAM=∠DAH,

∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,

∴△AMH是等边三角形,故③小题正确;

∵△ABM≌△ADH,

∴△AMH的面积等于四边形ABMD的面积,

又∵△AMH的面积=AM·AM=AM2

∴S四边形ABMDAM2,S四边形ABCD≠S四边形ABMD,故④小题错误,

综上所述,正确的是①②③共3个.

故选C.

【点评】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,题目较为复杂,特别是图形的识别有难度,从图形中准确确定出全等三角形并找出全等的条件是解题的关键.

查看答案和解析>>

同步练习册答案