【题目】如图,已知点A(-1,2),B(3,2),C(1,-2).
(1)求证:AB∥x轴;
(2)求△ABC的面积;
(3)若在y轴上有一点P,使S△ABP=S△ABC,求点P的坐标.
【答案】(1)答案见解析;(2)8;(3) (0,4)或(0,0).
【解析】试题分析:(1)由A、B的纵坐标直接证得;
(2)作CD⊥AB,根据题意求得AB和CD的长,然后根据三角形面积公式即可求得;
(3)设AB与y轴交于E点,则E(0,2),根据S△ABP=S△ABC,即可求得PE,进而求得P的坐标.
试题解析:(1)证明:∵A(-1,2)、B(3,2),
∴A、B的纵坐标相同,
∴AB∥x轴;
(2)解:如图,作CD⊥AB,
∵A(-1,2)、B(3,2)、C(1,-2).
∴AB=1+3=4,CD=2+2=4,
∴△ABC的面积=×AB×CD=×4×4=8;
(3)解:设AB与y轴交于E点,则E(0,2),
∵S△ABP=S△ABC,
∴PE=CD=2,
∴P(0,4)或(0,0).
科目:初中数学 来源: 题型:
【题目】对某一个函数给出如下定义:如果存在常数,对于任意的函数值,都满足≤,那么称这个函数是有上界函数;在所有满足条件的中,其最小值称为这个函数的上确界.例如,函数, ≤2,因此是有上界函数,其上确界是2.如果函数(≤x≤, <)的上确界是,且这个函数的最小值不超过2,则的取值范围是( )
A. ≤ B. C. ≤ D. ≤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则, .在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( )
A. (0,0) B. (0,2)
C. (2,-4) D. (-4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )
A. 企业男员工 B. 企业年满50岁及以上的员工
C. 用企业人员名册,随机抽取三分之一的员工 D. 企业新进员工
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地相距240千米,一辆公交车从A地出发,以每小时48千米的速度驶向B地;一辆小轿从B地出发,以每小时72千米的速度沿同条道路驶向A地。若小轿车从B地出发1小时后,公交车从A地出发,两车相向而行,求公交车出发后几小时两车相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在做作业时,遇到如下问题:如图1,已知:等边△ABC,点D在BC上,以AD为边作等边△ADE,连接CE,求证:∠ACE=60°.
(1)请你解答小明的这道题;
(2)在这个问题中,当D在BC上运动时,点E是否在一条线段上运动?
(直接答“是”或“不是”)
(3)如图2,正方形ABCD的边长为2,E是直线BC上的一个动点,以DE为边作正方形DEFG(DEFG按逆时针排列)。当E在直线BC上运动时,点G是否在一条直线上运动?如果是,请你画出这条直线并证明;如果不是,也请说明理由;
(4)连接AG、CG,①求证:AG2-CE2是定值; ②求AG+CG的最小值(直接写出答案即可)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”小长假小武举家计划到本省五个景点:婺源、三清山、井冈山、庐山、龙虎山旅玩.后因时间问题,只能选其中的二个景点,小武建议通过抽签决定,用五张小纸条分别写上五个景点做成五个签,让小武抽二次,每次抽一个签,每个签抽到的机会相等.
(1)小武最希望去婺源,求小武第一次恰好抽到婺源的概率是多少?
(2)除婺源外,小武还希望去三清山,求小武抽到婺源、三清山二个景点中至少一个的概率是多少?(通过“画树状图”或“列表”进行分析)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com