精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.

(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;
(2)点C旋转到点C′所经过的弧的半径是 , 点C经过的路线长是

【答案】
(1)解:如图所示,四边形OA′B′C′即为所求作的图形


(2) π
【解析】解:(2)根据勾股定理,OC= =
C经过的路线长= = π.
(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCADE都是等腰三角形,BC、DE分别是这两个等腰三角形的底边,且∠BAC=DAE.

(1)求证:BD=CE;

(2)连接DC.如果CD=CE,试说明直线AD垂直平分线段BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8筐白菜,以每25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:

回答下列问题:

1)这8筐白菜中最接近标准重量的这筐白菜重______ 千克;

2)与标准重量比较,8筐白菜总计超过或不足多少千克?

3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种笔记本的售价为2.2/本,如果买100本以上,超过100本部分的售价为2/本.

(1)小强和小明分别买了50本和200本,他们俩分别花了多少钱?

(2)如果小红买这种笔记本花了380元,她买了多少本?

(3)如果小红买这种笔记本花了n元,她又买了多少本?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图像可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图像,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(1)、(2)、(3)补充完整:
(1)①将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
②构造函数,画出图像
设y3=x2+4x﹣1,y4= , 在同一坐标系中分别画出这两个函数的图像.
双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(2)确定两个函数图像公共点的横坐标
观察所画两个函数的图像,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(3)借助图像,写出解集
结合(1)的讨论结果,观察两个函数的图像可知:不等式x3+4x2﹣x﹣4>0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“囧”(jiǒng)是一个风靡网络的流行词,像一个人脸郁闷的神情.如图所示,一张边长为8cm的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个字图案(阴影部分).设剪去的小长方形长和宽分别为xcm、ycm,剪去的两个小直角三角形的两直角边长也分别为xcm、ycm.

(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积.

(2)x=8,y=2时,求此时“囧”(阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.

(1)写出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①在长方形ABCDAB=12 cm,BC=6 cm.P沿AB边从点A开始向点B2 cm/s的速度移动;点Q沿DA边从点D开始向点A1 cm/s的速度移动.

设点PQ同时出发t(s)表示移动的时间.

(发现) DQ________cm,AP________cm.(用含t的代数式表示)

(拓展)(1)如图①t________s线段AQ与线段AP相等?

(2)如图②PQ分别到达BA后继续运动P到达点C后都停止运动.

t为何值时AQCP?

(探究)若点PQ分别到达点BA后继续沿着ABCDA的方向运动当点P与点Q第一次相遇时请直接写出相遇点的位置.

查看答案和解析>>

同步练习册答案