【题目】如图,等边三角形的边长为,点为上的一点,点为上的一点,连结、,.
求证:①;②;
若,求和的长.
【答案】(1)证明见解析;(2)CD=.
【解析】
(1)①由△ABC为等边三角形,易得∠B=∠C=60°,又∠APD=60°,由外角性质可得∠DPC=∠PAB,利用相似三角形的判定定理(AA)可得△ABP∽△PCD;
②由∠PAC=∠DAP,∠C=∠APD=60°,由相似三角形的判定定理(AA定理)可得△ADP∽△APC,利用相似三角形的性质可得结论;
(2)由AB=BC=3,PC=2,得到BP=1,由△ABP∽△PCD,利用相似三角形的性质可得,易得CD,可得AD,再利用AP2=ADAC,可得AP.
(1)①在等边三角形△ACB中,∠B=∠C=60°.
∵∠APD=60°,∠APC=∠PAB+∠B,∴∠DPC=∠PAB,∴△ABP∽△PCD;
②∵∠PAC=∠DAP,∠C=∠APD=60°,∴△ADP∽△APC,∴,∴AP2=ADAC;
(2)∵AB=BC=3,PC=2,∴BP=1.
∵△ABP∽△PCD,∴,∴CD==,∴AD=3﹣=.
∵AC=3,AD=,AP2=ADAC,∴AP=.
科目:初中数学 来源: 题型:
【题目】若二次函数y=x2+与y=-x2+k的图象的顶点重合,则下列结论不正确的是( )
A. 这两个函数图象有相同的对称轴 B. 这两个函数图象的开口方向相反
C. 方程-x2+k=0没有实数根 D. 二次函数y=-x2+k的最大值为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的顶点坐标分别为,,,把沿直线翻折,点的对应点为,抛物线经过点,顶点在直线上.
证明四边形是菱形,并求点的坐标;
求抛物线的对称轴和函数表达式;
在抛物线上是否存在点,使得与的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把大小和形状完全相同的张卡片分成两组,每组张,分别标上、、,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.
请用画树状图的方法求取出的两张卡片数字之和为奇数的概率;
若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线.
当抛物线的顶点在轴上时,求该抛物线的解析式;
不论取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
若有两点,且该抛物线与线段始终有交点,请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的序号是___________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)
(2)求S△ADC: S△ADB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在图中的点上标出相应字母A、B、C,并求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点P是射线ON上一动点,点B是射线OA上一动点,点B,P均不与点O重合,当_____时,为直角三角形;如果使得为钝角三角形,则的取值范围是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com