精英家教网 > 初中数学 > 题目详情
如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.小明认为蚂蚁能够最快到达目的地的路径AC1,小王认为蚂蚁能够最快到达目的地的路径AC1′.已知AB=4,BC=4,CC1=5时,请你帮忙他们求出蚂蚁爬过的最短路径长.
分析:根据题意,先将长方体展开,再根据两点之间线段最短.
解答:解:蚂蚁沿着木柜表面经线段A1B1到C1,爬过的路径的长是
L1=
42+(4+5) 2
=
97

蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长是
L2=
(4+4) 2+52
=
89

因为:L1>L2
所以最短路径的长是L2=
89
点评:考查了平面展开-最短路径问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.
(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;
(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,
(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;
(2)求蚂蚁爬过的最短路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.
(1)请你画出蚂蚁能够最快到达目的地的可能路径;
(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;
(3)求点B1到最短路径的距离.

查看答案和解析>>

科目:初中数学 来源:2011-2012年福建省泉州市永春县八年级上册期中考试数学试卷(解析版) 题型:解答题

 如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.小明认为蚂蚁能够最快到达目的地的路径AC1,小王认为蚂蚁能够最快到达目的地的路径AC1.已知AB=4,BC=4,CC1=5时,请你帮忙他们求出蚂蚁爬过的最短路径的长.

 

查看答案和解析>>

同步练习册答案