精英家教网 > 初中数学 > 题目详情
1.如图①,在?ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止.设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为(  )
A.11B.14C.8+$\frac{3}{2}\sqrt{3}$D.8+3$\sqrt{3}$

分析 作CM⊥AB于M,根据三角形面积公式可得当点P在D上运动时,△PAB的面积不变,再联系函数图象可得BC=4cm,则AB=3cm,然后根据三角函数求出CM,三角形面积公式求出AB,即可得出结果.

解答 解:作CM⊥AB于M如图所示:
当点P在CD上运动时,△PAB的面积不变,
由图②得:BC=4cm,
∵∠ABC=120°,
∴∠CBM=60°,
∴CM=BC•sin60°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∵△ABC的面积=$\frac{1}{2}$AB•CM=$\frac{1}{2}$AB×2$\sqrt{3}$=6$\sqrt{3}$,
∴AB=6cm,
∴OH=4+6+4=14,
∴点H的横坐标为14.
故选:B.

点评 本题考查了平行四边形的性质、动点问题的函数图象.解决本题的关键是利用函数图象和三角形面积确定AB的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.已知a(a-2)-(a2-2b)=-4.求$\frac{{a}^{2}+{b}^{2}}{-2-ab}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知一次函数y=kx+b的图象如图所示,下列说法中不正确的是(  )
A.函数值y随x的增大而减少B.kb<0
C.当x<1时,y>0D.k+b<0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知直线y=2x+3与抛物线y=2x2-3x+1交于A(x1,y1),B(x2,y2)两点,则$\frac{1}{{x}_{1}+1}+\frac{1}{{x}_{2}+1}$=$\frac{9}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.【情景观察】
将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P、Q,如图1,观察图1可知:与NQ相等的线段是PR,与∠NRQ相等的角是∠PMR.
【问题探究】
直角△ABC中,∠B=90°,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.
【拓展延伸】
直角△ABC中,∠B=90°,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3,如果AC=kCE,CD=kCH,试探究TE与TH之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知,如图,抛物线y=-x2+ax+b与x轴从左至右交于A、B两点,与y轴正半轴交于点C.设∠OCB=α,∠OCA=β,且tanα-tanβ=2,OC2=OA•OB.
(1)△ABC是否为直角三角形?若是,请给出证明;若不是,请说明理由;
(2)求抛物线的解析式;
(3)若抛物线的顶点为P,求四边形ABPC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2-2x-3,当x=4时,f(4)=42-2×4-3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2-2x-3的图象如图1所示.
观察可知:f(-2)>0,f(1)<0,则f(-2).f(1)<0.所以函数f(x)=x2-2x-3在-2≤x≤1范围内有零点.由于f(-1)=0,所以,-1是f(x)=x2-2x-3的零点,-1也是方程x2-2x-3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)•f(b)<0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是1.
(2)已知函数y2=f(x)=-$\sqrt{3}{x^2}-2\sqrt{3}(a-1)x-\sqrt{3}({a^2}-2a)$的零点为x1,x2,且x1<1<x2
①求零点为x1,x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1,x2,点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,某海洋区域内有A、B两个小岛,其中A岛在B岛的西南方向,一天,一只轮船上午8时从A岛出发,沿正东方向以每小时80海里的速度航行1.5小时到达C处,此时轮船在B岛的南偏西15°方向,试求A、B两岛相距多少海里?(结果保留根号)(注:E-东方,W-西方,S-南方,N-北方)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列运算正确的是(  )
A.a3+a3=26aB.3a-2a=aC.3a2b-4b2a=-a2bD.(-a)2=-a2

查看答案和解析>>

同步练习册答案