【题目】如图,是的直径,为上一点,于点,交于点,与交于点为延长线上一点,且.
(1)求证:是的切线;
(2)求证:;
(3)若,求的长.
【答案】(1)证明见解析;(2)证明见解析;(3)
【解析】
(1)欲证明BD是⊙O的切线,只要证明BD⊥AB;
(2)连接AC,证明△FCM∽△FAC即可解决问题;
(3)连接BF,想办法求出BF,FM即可解决问题.
(1)∵,
∴∠AFC=∠ABC,
又∵∠AFC=∠ODB,
∴∠ABC=∠ODB,
∵OE⊥BC,
∴∠BED=90°,
∴∠ODB+∠EBD=90°,
∴∠ABC+∠EBD=90°,
∴OB⊥BD,
∴BD是⊙O的切线;
(2)连接AC,
∵OF⊥BC,
∴,,
∴∠BCF=∠FAC,
又∵∠CFM=∠AFC,
∴△FCM∽△FAC,
∴;
(3)连接BF,
∵AB是⊙O的直径,且AB=10,
∴∠AFB=90°,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).
(1)求点A与点B的坐标;
(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.
(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线M:y=ax2-4ax+a-1(a≠0)与x轴交于A,B两点(点A在点B左侧),抛物线的顶点为D.
(1)抛物线M的对称轴是直线______;
(2)当AB=2时,求抛物线M的函数表达式;
(3)在(2)的条件下,直线l:y=kx+b(k≠0)经过抛物线的顶点D,直线y=n与抛物线M有两个公共点,它们的横坐标分别记为x1,x2,直线y=n与直线l的交点的横坐标记为x3(x3>0),若当-2≤n≤-1时,总有x1-x3>x3-x2>0,请结合函数的图象,直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,则球的半径长是( )
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.
(1)求证:△AED是等腰直角三角形;
(2)如图1,已知⊙O的半径为.
①求的长;
②若D为EB中点,求BC的长.
(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学共有学生2000名,各年级男、女生人数如下表:
年级 | 六年级 | 七年级 | 八年级 | 九年级 |
男生 | 250 | z | 254 | 258 |
女生 | x | 244 | y | 252 |
若从全校学生中任意抽取一名,抽到六年级女生的概率是0.12;若将各年级的男、女学生人数制成扇形统计图,八年级女生对应扇形的圆心角为44.28°.
(1)求x,y,z的值;
(2)求各年级女生的平均数;
(3)如果从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料,并完成相应的任务.
在数学中,当问题的条件不够时间,常添加辅助线构成新图形,形成新关系,建立已知与未知的桥梁,从而把原问题转化为易于解决的问题.在著名美籍匈牙利数学教波利亚所著的《数学的发现》一书中有这样一个例子:试作一个三角形,使它的三边长分别是各条中线长的三分之一,解决这个问题的步骤如下:
第一步,如图1,己知的三条中线,和相交于点,则有.
下面是该结论的部分证明过程:
证明:如图1,过点作的平分线,交的延长线于点,则.
又,
∴.
∴.
∵点是的中点,
∴.
……
第二步,同理可以证明:.
第三步,如图2,取BM的中点,连接.则的三边长分别是各条中线长的三分之一.
任务:(1)请在上面第一步中证明过程的基础上完成对结论的证明;
(2)请完成第三步的结论的证明;
(3)请直接写出图2中与的面积比:_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图Rt△ABC中,∠ACB=90°,AC=4,BC=2,点P在边AC上运动(点P与点A、C不重合).以P为圆心,PA为半径作⊙P交边AB于点D、过点D作⊙P的切线交射线BC于点E(点E与点B不重合).
(1)求证:BE=DE;
(2)若PA=1.求BE的长;
(3)在P点的运动过程中.(BE+PA)PA的值是否有最大值?如果有,求出最大值;如果没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com